Bag-of-Words (BoW) 模型是NLP和IR领域中的一个基本假设。在这个模型中,一个文档(document)被表示为一组单词(word/term)的无序组合,而忽略了语法或者词序的部分。BOW在传统NLP领域取得了巨大的成功,在计算机视觉领域(Computer Vision)也开始崭露头角,但在实际应用过程中,它却有一些不可避免的缺陷,比如:

  • 稀疏性(Sparseness): 对于大词典,尤其是包括了生僻字的词典,文档稀疏性不可避免;
  • 多义词(Polysem): 一词多义在文档中是常见的现象,BOW模型只统计单词出现的次数,而忽略了他们之间的区别;
  • 同义词(Synonym): 同样的,在不同的文档中,或者在相同的文档中,可以有多个单词表示同一个意思;

从同义词和多义词问题我们可以看到,单词也许不是文档的最基本组成元素,在单词与文档之间还有一层隐含的关系,我们称之为主题(Topic)。我们在写文章时,首先想到的是文章的主题,然后才根据主题选择合适的单词来表达自己的观点。在BOW模型中引入Topic的因素,成为了大家研究的方向,这就是我们要讲的Latent Semantic Analysis (LSA) 和 probabilitistic Latent Semantic Analysis (pLSA),至于更复杂的LDA和众多其他的Topic Models,以后再详细研究。

LSA简介

LSA的基本思想就是,将document从稀疏的高维Vocabulary空间映射到一个低维的向量空间,我们称之为隐含语义空间(Latent Semantic Space).

http://blog.csdn.net/zhoubl668/article/details/7881318

bow lsa plsa的更多相关文章

  1. 一口气讲完 LSA — PlSA —LDA在自然语言处理中的使用

    自然语言处理之LSA LSA(Latent Semantic Analysis), 潜在语义分析.试图利用文档中隐藏的潜在的概念来进行文档分析与检索,能够达到比直接的关键词匹配获得更好的效果. LSA ...

  2. LSA和pLSA的比较

    Comparison   LSA pLSA 1. Theoretical background Linear Algebra Probabilities and Statistics 2. Objec ...

  3. NLP点滴——文本相似度

    [TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度 ...

  4. Logistic Regression逻辑回归

    参考自: http://blog.sina.com.cn/s/blog_74cf26810100ypzf.html http://blog.sina.com.cn/s/blog_64ecfc2f010 ...

  5. ogistic regression (逻辑回归) 概述

    :http://hi.baidu.com/hehehehello/blog/item/0b59cd803bf15ece9023d96e.html#send http://en.wikipedia.or ...

  6. (四)Logistic Regression

    1 线性回归 回归就是对已知公式的未知参数进行估计.线性回归就是对于多维空间中的样本点,用特征的线性组合去拟合空间中点的分布和轨迹,比如已知公式是y=a∗x+b,未知参数是a和b,利用多真实的(x,y ...

  7. 【转】Logistic regression (逻辑回归) 概述

    Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等 ...

  8. 转:Logistic regression (逻辑回归) 概述

    Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等 ...

  9. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

随机推荐

  1. c++中sizeof()的用法介绍

    1.      定义 sizeof是一个操作符(operator). 其作用是返回一个对象或类型所占的内存字节数. 2.      语法 sizeof有三种语法形式: 1)  sizeof (obje ...

  2. the night the room

    http://bogifabian.com/?page_id=2529 I am trying to creat dreamful atmospheres, paint walls and floor ...

  3. POJ——T 2891 Strange Way to Express Integers

    http://poj.org/problem?id=2891 Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16849   ...

  4. 洛谷——P2678 跳石头

    https://www.luogu.org/problem/show?pid=2678#sub 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布着 ...

  5. C语言编程入门——程序练习(下)

    C语言的一些简单操作练习. 互换两个数字: # include <stdio.h> int main(void) { int i = 3; int j = 5; int t;   //将i ...

  6. 有关cascade的结构体

    /* internal cascade classifier */ typedef struct CvCascadeHaarClassifier { CV_INT_HAAR_CLASSIFIER_FI ...

  7. 35.Intellij IDEA设置忽略部分类编译错误

    转自:https://www.aliyun.com/jiaocheng/290360.html 有些时候我们的项目中有些错误,但这些错误并不影响项目的整体运行(或许是没有使用到),默认情况下idea是 ...

  8. AngularJsDEMO

    接触AngularJs时间不长,纯粹是学着好玩而已,因此没有深挖原理,针对理论性的知识,园子里面有很多介绍,我就不多介绍了. 这里写了个简单的DEMO,部署起来就可以直接运行了,里面 大概用了最基础的 ...

  9. golang sync.Once

    package main import ( "fmt" "sync" "time" ) func main() { var once syn ...

  10. maven仓库快速镜像

    国内连接maven官方的仓库更新依赖库,网速一般很慢,收集一些国内快速的maven仓库镜像以备用. ====================国内OSChina提供的镜像,非常不错=========== ...