HDU 3072--Intelligence System【SCC缩点新构图 && 求连通全部SCC的最小费用】
Intelligence System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1859 Accepted Submission(s): 799
Now, kzc_tc, the head of the Intelligence Department (his code is once 48, but now 0), is sudden obtaining important information from one Intelligence personnel. That relates to the strategic direction and future development of the situation of ALPC. So it
need for emergency notification to all Intelligence personnel, he decides to use the intelligence system (kzc_tc inform one, and the one inform other one or more, and so on. Finally the information is known to all).
We know this is a dangerous work. Each transmission of the information can only be made through a fixed approach, from a fixed person to another fixed, and cannot be exchanged, but between two persons may have more than one way for transferring. Each act of
the transmission cost Ci (1 <= Ci <= 100000), the total cost of the transmission if inform some ones in our ALPC intelligence agency is their costs sum.
Something good, if two people can inform each other, directly or indirectly through someone else, then they belong to the same branch (kzc_tc is in one branch, too!). This case, it’s very easy to inform each other, so that the cost between persons in the same
branch will be ignored. The number of branch in intelligence agency is no more than one hundred.
As a result of the current tensions of ALPC’s funds, kzc_tc now has all relationships in his Intelligence system, and he want to write a program to achieve the minimum cost to ensure that everyone knows this intelligence.
It's really annoying!
In each case, the first line is an Integer N (0< N <= 50000), the number of the intelligence personnel including kzc_tc. Their code is numbered from 0 to N-1. And then M (0<= M <= 100000), the number of the transmission approach.
The next M lines, each line contains three integers, X, Y and C means person X transfer information to person Y cost C.
Believe kzc_tc’s working! There always is a way for him to communicate with all other intelligence personnel.
3 3
0 1 100
1 2 50
0 2 100
3 3
0 1 100
1 2 50
2 1 100
2 2
0 1 50
0 1 100
150
100
50
题目大意:给了一个含有 n(0<n<=50000) 个节点的有向图。图中的两点之间的连接要付出代价的(经过的边权之和),可是假设这两个点之间相互可达,代价为 0。
问从给定的节点0向其它全部的点通信,所花费的最小代价是多少?
思路:假设这两个点之间相互可达(直接简单介绍均可),代价为 0,即在一个SCC中的点连接的代价为0。所以首先SCC缩点新构图, 形成一个DAG图(有向无环图)。注意:一个SCC内的点相互连接是不须要花费的。可是连接两个SCC是要花费的,所以我们要在每一个SCC中找到花费最小的点最为整个SCC的花费,这样我们连接全部的SCC时花费才最小。
还要注意,0点所在的SCC花费为0。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 50000 + 5000
#define maxm 100000 + 10000
#define INF 0x3f3f3f3f
using namespace std;
int n, m; struct node {
int u, v, w, next;
}; node edge[maxm]; int head[maxn], cnt;
int low[maxn], dfn[maxn];
int dfs_clock;
int Stack[maxn], top;
bool Instack[maxn];
int Belong[maxn];
int scc_clock;
int num[maxn];//记录每一个缩点的花费。 void init(){
cnt = 0;
memset(head, -1, sizeof(head));
} void addedge(int u, int v, int w){
int i;
for(i = head[u]; i != -1; i = edge[i].next){
if(edge[i].v == v)
break;
}
if(i == -1){
edge[cnt] = {u, v, w, head[u]};
head[u] = cnt++;
}
else//有重边,更新这条边最小的花费
edge[i].w = min(edge[i].w, w);
} void getmap(){
int a, b, c;
while(m--){
scanf("%d%d%d", &a, &b, &c);
a++, b++;
addedge(a, b, c);
}
} void Tarjan(int u){
int v;
low[u] = dfn[u] = ++dfs_clock;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next){
v = edge[i].v;
if(!dfn[v]){
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(dfn[u] == low[u]){
scc_clock++;
do{
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc_clock;
}
while(v != u);
}
} void find(){
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(Belong, 0, sizeof(Belong));
memset(Stack, 0, sizeof(Stack));
memset(Instack, false, sizeof(false));
dfs_clock = scc_clock = top = 0;
for(int i = 1; i <= n ; ++i){
if(!dfn[i])
Tarjan(i);
}
} void suodian(){
for(int i = 1; i <= scc_clock; ++i)
num[i] = INF;
for(int i = 0; i < cnt; ++i){
int u = Belong[edge[i].u];
int v = Belong[edge[i].v];
if(u != v){
//跟新每一个缩点的最小花费
num[v] = min(num[v], edge[i].w);
}
}
} void solve(){
int ans = 0;
//printf("%d\n", scc_clock);
for(int i = 1; i <= scc_clock; ++i){
//printf("%d\n", num[i]);
if(Belong[1] != i)
ans += num[i];
}
printf("%d\n", ans);
} int main (){
while(scanf("%d%d", &n, &m) != EOF){
init();
getmap();
find();
suodian();
solve();
}
return 0;
}
HDU 3072--Intelligence System【SCC缩点新构图 && 求连通全部SCC的最小费用】的更多相关文章
- HDU 3072 Intelligence System(tarjan染色缩点+贪心+最小树形图)
Intelligence System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- HDU 3072 Intelligence System (强连通分量)
Intelligence System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- HDU——3072 Intelligence System
Intelligence System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- hdu 3072 Intelligence System(Tarjan 求连通块间最小值)
Intelligence System Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- HDU - 3072 Intelligence System
题意: 给出一个N个节点的有向图.图中任意两点进行通信的代价为路径上的边权和.如果两个点能互相到达那么代价为0.问从点0开始向其余所有点通信的最小代价和.保证能向所有点通信. 题解: 求出所有的强连通 ...
- hdoj 3072 Intelligence System【求scc&&缩点】【求连通所有scc的最小花费】
Intelligence System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- HDU——T 3072 Intelligence System
http://acm.hdu.edu.cn/showproblem.php?pid=3072 Time Limit: 2000/1000 MS (Java/Others) Memory Limi ...
- Intelligence System (hdu 3072 强联通缩点+贪心)
Intelligence System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- HDU 3072 SCC Intelligence System
给出一个带权有向图,要使整个图连通.SCC中的点之间花费为0,所以就先缩点,然后缩点后两点之间的权值为最小边的权值,把这些权值累加起来就是答案. #include <iostream> # ...
随机推荐
- 紫书 例题 10-25 UVa 1363(找规律)
可以发现余数是成一段一段的等差数列的. 在商数同的时候,余数是成首项为第一个数的余数,公差 为商数的等差数列. 利用这个性质求解即可. #include<cstdio> #include& ...
- Unity Shader (五)Surface Shader示例
1.替换颜色 Shader "Custom/Example_Frag_5" { Properties { _MainTex ("Albedo (RGB)", 2 ...
- cacti1.1安装报错
安装过程中出现以下报错: ERROR: Your MySQL TimeZone database is not populated. Please populate this database bef ...
- windows下laravel5安装
第一步:安装composer 网上教程非常多,自行百度 第二步:使用composer create-project laravel/laravel learnlaravel5 5.0.22 ...
- Redis中的持久化操作
本篇博客主要来解说一下怎样Redis中的持久化操作,当然了不是一篇理论性的博客,主要还是分享一下在redis中怎样来配置持久化操作. 1.介绍 redis为了内部数据的安全考虑,会把本身的数 ...
- java 自己定义异常,记录日志简单说明!留着以后真接复制
log4j 相关配制说明:http://blog.csdn.net/liangrui1988/article/details/17435139 自己定义异常 package org.rui.Excep ...
- ORA-01003: no statement parsed
环境:delphi 5.BDE.oracle10 delphi里面用tStoreProc调用存储过程出现ORA-01003: no statement parsed. 解决方法:tStoreProc. ...
- TortoiseSvn安装的时候,将svn的命令行工具单独隔离出来
https://stackoverflow.com/questions/2967176/where-is-svn-exe-in-my-machine The subversion program co ...
- mybatis+springmvc+sqlite一个累心的问题:不在纠结
1 java.sql.SQLException: NYI 2 org.sqlite.RS.getColumnClassName(RS.java:269) 在配置mybatis+springmvc+sq ...
- centos 5的yum源无法使用的解决方法( 转载)
由于centos 5 已经停更.于是导致yum源也不能用了. 例如安装screen的时候提示 Determining fastest mirrors* base: denver.gaminghost. ...