from __future__ import print_function
import pandas as pd
import numpy as np np.random.seed(1)
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['A', 'B', 'C', 'D'])

赋值,新增列数据

df.iloc[2,2], df.loc['2013-01-03', 'D']

df.A[df.A>0], df['F']

df.iloc[2,2] = 1111                # 设置行列编号为2,2的数据只为1
df.loc['2013-01-03', 'D'] = 2222 # 设置行属性值为‘2013……’,列属性值为‘D’的值为2222
df[df.A>0] = 0 # 只保留列属性为‘A’且大于0的值,全部数据中的其他数据都设置为0
df.A[df.A>0] = 0 # 只更改列属性为‘A’的数据
df['F'] = np.nan # 新增加一个属性列‘F’,所有的值为NaN
df['G'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101', periods=6)) # 新增一个列‘G’

以下是所有的运行结果:

print(df)

>                    A         B         C         D
> 2013-01-01 1.624345 -0.611756 -0.528172 -1.072969
> 2013-01-02 0.865408 -2.301539 1.744812 -0.761207
> 2013-01-03 0.319039 -0.249370 1.462108 -2.060141
> 2013-01-04 -0.322417 -0.384054 1.133769 -1.099891
> 2013-01-05 -0.172428 -0.877858 0.042214 0.582815
> 2013-01-06 -1.100619 1.144724 0.901591 0.502494
df.iloc[2,2] = 1111
print(df) > A B C D
> 2013-01-01 1.624345 -0.611756 -0.528172 -1.072969
> 2013-01-02 0.865408 -2.301539 1.744812 -0.761207
> 2013-01-03 0.319039 -0.249370 1111.000000 -2.060141
> 2013-01-04 -0.322417 -0.384054 1.133769 -1.099891
> 2013-01-05 -0.172428 -0.877858 0.042214 0.582815
> 2013-01-06 -1.100619 1.144724 0.901591 0.502494
df.loc['2013-01-03', 'D'] = 2222
print(df) > A B C D
> 2013-01-01 1.624345 -0.611756 -0.528172 -1.072969
> 2013-01-02 0.865408 -2.301539 1.744812 -0.761207
> 2013-01-03 0.319039 -0.249370 1111.000000 2222.000000
> 2013-01-04 -0.322417 -0.384054 1.133769 -1.099891
> 2013-01-05 -0.172428 -0.877858 0.042214 0.582815
> 2013-01-06 -1.100619 1.144724 0.901591 0.502494
df[df.A < 0] = 0
print(df) > A B C D
> 2013-01-01 1.624345 -0.611756 -0.528172 -1.072969
> 2013-01-02 0.865408 -2.301539 1.744812 -0.761207
> 2013-01-03 0.319039 -0.249370 1.462108 -2.060141
> 2013-01-04 0.000000 0.000000 0.000000 0.000000
> 2013-01-05 0.000000 0.000000 0.000000 0.000000
> 2013-01-06 0.000000 0.000000 0.000000 0.000000
df.A[df.A < 0] = 0
print(df) > A B C D
> 2013-01-01 1.624345 -0.611756 -0.528172 -1.072969
> 2013-01-02 0.865408 -2.301539 1.744812 -0.761207
> 2013-01-03 0.319039 -0.249370 1.462108 -2.060141
> 2013-01-04 0.000000 -0.384054 1.133769 -1.099891
> 2013-01-05 0.000000 -0.877858 0.042214 0.582815
> 2013-01-06 0.000000 1.144724 0.901591 0.502494
df['E'] = np.nan
print(df) > A B C D E
> 2013-01-01 1.624345 -0.611756 -0.528172 -1.072969 NaN
> 2013-01-02 0.865408 -2.301539 1.744812 -0.761207 NaN
> 2013-01-03 0.319039 -0.249370 1.462108 -2.060141 NaN
> 2013-01-04 0.000000 -0.384054 1.133769 -1.099891 NaN
> 2013-01-05 0.000000 -0.877858 0.042214 0.582815 NaN
> 2013-01-06 0.000000 1.144724 0.901591 0.502494 NaN
df['G']  = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101', periods=6))
print(df) > A B C D E G
> 2013-01-01 1.624345 -0.611756 -0.528172 -1.072969 NaN 1
> 2013-01-02 0.865408 -2.301539 1.744812 -0.761207 NaN 2
> 2013-01-03 0.319039 -0.249370 1.462108 -2.060141 NaN 3
> 2013-01-04 0.000000 -0.384054 1.133769 -1.099891 NaN 4
> 2013-01-05 0.000000 -0.877858 0.042214 0.582815 NaN 5
> 2013-01-06 0.000000 1.144724 0.901591 0.502494 NaN 6

END

pandas 3 设置值的更多相关文章

  1. pandas设置值-【老鱼学pandas】

    本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import ...

  2. Python 数据分析:Pandas 缺省值的判断

    Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 No ...

  3. easyUI validatebox设置值和获取值,以及属性和方法

    一:表单元素使用easyui时,textbox和validatebox设置值和获取值的方式不一样[转] 1.为text-box设置值只能使用id选择器选择表单元素,只能使用textbox(" ...

  4. easyui-textbox 和 easyui-validatebox 设置值和获取值

    表单作如下定义:该input使用easyui的"easyui-textbox" <input id="addSnumber" style="wi ...

  5. JS表单设置值

    //表单设置值 $.fn.setForm = function(jsonValue) { var obj = this; $.each(jsonValue, function (name, ival) ...

  6. 从redis中取值如果不存在设置值,使用Redisson分布式锁【我】

    用到的jar包: <!-- Redis客户端 --> <dependency> <groupId>redis.clients</groupId> < ...

  7. [js]作用域链查找规则获取值和设置值

    作用域链查找规则获取值和设置值 <script> /** 1.作用域链查找规则 私有作用域出现的一个变量不是私有的,则往上一级作用域查找,上级作用域没有则继续向上级查找,一直找到windo ...

  8. Spring Boot设置值:分别用@ConfigurationProperties和@Value给属性设值及其区别

    @ConfigurationProperties给属性映射值编写JavaBean/** 将配置文件application.properties中配置的每一个属性值映射到当前类的属性中:* @Confi ...

  9. jquery获取和设置值

    1.html html() :   取得第一个匹配元素的html内容. html(value): 设置每一个匹配元素的html内容 2text text() :  取得所有匹配元素的内容,结果是由所有 ...

随机推荐

  1. How Many Partitions Does An RDD Have

    From https://databricks.gitbooks.io/databricks-spark-knowledge-base/content/performance_optimization ...

  2. NOIP2013 华容道 (棋盘建图+spfa最短路)

    #include <cstdio> #include <algorithm> #include <cstring> #include <queue> # ...

  3. CSS学习(五)

    导航栏 熟练使用导航栏,对于任何网站都非常重要. 使用CSS你可以转换成好看的导航栏而不是枯燥的HTML菜单. 导航栏=链接列表 作为标准的HTML基础一个导航栏是必须的.在我们的例子中我们将建立一个 ...

  4. windows下使用libsvm3.2

    一.官方介绍 libsvm主页:https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html libsvm介绍文档:http://www.csie.ntu. ...

  5. Android ToolBar 的简单封装

    使用过 ToolBar 的朋友肯定对其使用方法不陌生,由于其使用方法非常easy.假设对 ActionBar 使用比較熟练的人来说.ToolBar 就更easy了!只是,相信大家在使用的过程中都遇到过 ...

  6. Xamarin部署时遇到错误: Failure [INSTALL_FAILED_UPDATE_INCOMPATIBLE]

    1 把adb命令加入到环境变量. ADB 的位置:C:\Users\USER\AppData\Local\Android\android-sdk\platform-tools 2. 卸载包,执行(是a ...

  7. Systemd启动图形界面过程

    1 启动命令 systemctl isolate graphical.target 2 启动过程: 文件:/etc/systemd/system/graphical.target 来自:systemd ...

  8. hdoj--4325--Flowers(线段树+二分)

    Flowers Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Su ...

  9. 解决linux ping: unknown host www.baidu.com

    如果ping域名的时候出现ping:unknown host  xxx.xxx 但是ping IP地址的时候可以通的话 可知是dns服务器没有配置好, 查看一下配置文件/etc/resolv.conf ...

  10. 文档相关命令-cat命令查看一个文件

    用于查看一个文件的内容并将其显示在屏幕上 cat 后直接加上文件名 -n  表示显示行号 cat -n dirb/filee -A 显示所有内容包括特殊字符 cat -A dirb/filee