其实还不是很懂。看了这篇文章:
 
事情还没有发生,要求这件事情发生的可能性的大小,是先验概率. 
事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率.
一、先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为“由因求果”问题中的“因”出现。后验概率是指在得到“结果”的信息后重新修正的概率,如贝叶斯公式中的,是“执果寻因”问题中的“因”。先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础。
 

先验概率 vs 后验概率的更多相关文章

  1. SLAM的数学基础(4):先验概率、后验概率、贝叶斯准则

    假设有事件A和事件B,可以同时发生但不是完全同时发生,如以下韦恩图所示: 其中,A∩B表示A和B的并集,即A和B同时发生的概率. 如此,我们很容易得出,在事件B发生的情况下,事件A发生的概率为: 这个 ...

  2. 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

    目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...

  3. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

  4. 高斯混合模型(GMM)

    复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...

  5. paper 17 : 机器学习算法思想简单梳理

    前言: 本文总结的常见机器学习算法(主要是一些常规分类器)大概流程和主要思想. 朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分 ...

  6. 机器学习&数据挖掘笔记(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时( ...

  7. 財哥面京东dm的经历【帮財哥发的】

        关于面京东,感触仅仅有一个,虐的快吐血了.首先说京东分四个板块,有京东商城.京东金融.京东刚收购的拍拍和海外事业部.我这个职位主要是在金融部数据组做数据挖掘和机器学习,还有推荐系统.面试是在周 ...

  8. [转]机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(I ...

  9. NLP系列(2)_用朴素贝叶斯进行文本分类(上)

    作者:龙心尘 && 寒小阳 时间:2016年1月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50597149 h ...

随机推荐

  1. 【POJ 1456】 Supermarket

    [题目链接] http://poj.org/problem?id=1456 [算法] 贪心 + 堆 [代码] #include <algorithm> #include <bitse ...

  2. android sdk 更新失败问题解决办法

    网上几乎都是这么说的 1.设置tools下的options,然后点击菜单packages下的reload 2.然后就会出现列表在点install进行安装 但是在更新时莫名其妙的也会出现错误 解决类似这 ...

  3. PCB C# 连接MongoDB 数据库

    一.C# MongoDB 驱动下载 1.百度网盘:nuget下载地址(V2.7版本) https://pan.baidu.com/s/1VDsVcH1TMrXqhRCZVewZgA 2.VS 中NUg ...

  4. ccf 201803-4 棋局评估 (对抗搜索)

    棋局评估 问题描述 Alice和Bob正在玩井字棋游戏. 井字棋游戏的规则很简单:两人轮流往3*3的棋盘中放棋子,Alice放的是“X”,Bob放的是“O”,Alice执先.当同一种棋子占据一行.一列 ...

  5. BZOJ 4565 状压DP

    思路: f[i][j][S]表示从i到j压成S状态 j-m是k-1的倍数 $f[i][j][S<<1]=max(f[i][j][S<<1],f[i][m-1][S]+f[m][ ...

  6. css3中的box-sizing属性的使用

    box-sizing属性用来定义元素的width和height所表示的区域,该属性一般有三种值:content-box.border-box.inherit. 其中inherit表示box-sizin ...

  7. Android 4.0 Launcher2源码分析——主布局文件(转)

    本文来自http://blog.csdn.net/chenshaoyang0011 Android系统的一大特色是它拥有的桌面通知系统,不同于IOS的桌面管理,Android有一个桌面系统用于管理和展 ...

  8. 在64位WindowsServer2012R2中安装Oracle10g第二版(10.2.0.4.0)-20160106

      1.操作系统版本 用于安装数据库的操作系统镜像文件名为:cn_windows_server_2012_r2_vl_with_update_x64_dvd_6052729.iso 安装DataCen ...

  9. Java_Web之俱乐部会员信息管理系统

    使用 Jsp实现俱乐部会员信息管理功能,orac1e11g作为后台数据库,该系统包括查看俱乐部会员信息列表和修改俱乐部会员信息两人功能,具体耍求如下: 打开俱乐部会员信息列表页面,以列表方式显示所有俱 ...

  10. Typeclassopedia 阅读笔记:导言与 Functor

    Typeclassopedia 阅读笔记 本文是对介绍 Haskell 中类型类(type classes)的文档 Typeclassopedia 的阅读笔记和简短总结,包含此文档中重要的知识点.读者 ...