如何为Kafka集群选择合适的Partitions数量
转载:http://blog.csdn.net/odailidong/article/details/52571901
这是许多kafka使用者经常会问到的一个问题。本文的目的是介绍与本问题相关的一些重要决策因素,并提供一些简单的计算公式。
文章目录
越多的分区可以提供更高的吞吐量
首先我们需要明白以下事实:在kafka中,单个patition是kafka并行操作的最小单元。在producer和broker端,向每一个分区写入数据是可以完全并行化的,此时,可以通过加大硬件资源的利用率来提升系统的吞吐量,例如对数据进行压缩。在consumer段,kafka只允许单个partition的数据被一个consumer线程消费。因此,在consumer端,每一个Consumer Group内部的consumer并行度完全依赖于被消费的分区数量。综上所述,通常情况下,在一个Kafka集群中,partition的数量越多,意味着可以到达的吞吐量越大。
我们可以粗略地通过吞吐量来计算kafka集群的分区数量。假设对于单个partition,producer端的可达吞吐量为p,Consumer端的可达吞吐量为c,期望的目标吞吐量为t,那么集群所需要的partition数量至少为max(t/p,t/c)。在producer端,单个分区的吞吐量大小会受到批量大小、数据压缩方法、 确认类型(同步/异步)、复制因子等配置参数的影响。经过测试,在producer端,单个partition的吞吐量通常是在10MB/s左右。在consumer端,单个partition的吞吐量依赖于consumer端每个消息的应用逻辑处理速度。因此,我们需要对consumer端的吞吐量进行测量。
虽然随着时间的推移,我们能够对分区的数量进行添加,但是对于基于Key来生成的这一类消息需要我们重点关注。当producer向kafka写入基于key的消息时,kafka通过key的hash值来确定消息需要写入哪个具体的分区。通过这样的方案,kafka能够确保相同key值的数据可以写入同一个partition。kafka的这一能力对于一部分应用是极为重要的,例如对于同一个key的所有消息,consumer需要按消息的顺序进行有序消费。如果partition的数量发生改变,那么上面的有序性保证将不复存在。为了避免上述情况发生,通常的解决办法是多分配一些分区,以满足未来的需求。通常情况下,我们需要根据未来1到2年的目标吞吐量来设计kafka的分区数量。
一开始,我们可以基于当前的业务吞吐量为kafka集群分配较小的broker数量,随着时间的推移,我们可以向集群中增加更多的broker,然后在线方式将适当比例的partition转移到新增加的broker中去。通过这样的方法,我们可以在满足各种应用场景(包括基于key消息的场景)的情况下,保持业务吞吐量的扩展性。
在设计分区数时,除了吞吐量,还有一些其他因素值得考虑。正如我们后面即将看到的,对于一些应用场景,集群拥有过的分区将会带来负面的影响。
越多的分区需要打开更多地文件句柄
在kafka的broker中,每个分区都会对照着文件系统的一个目录。在kafka的数据日志文件目录中,每个日志数据段都会分配两个文件,一个索引文件和一个数据文件。当前版本的kafka,每个broker会为每个日志段文件打开一个index文件句柄和一个数据文件句柄。因此,随着partition的增多,需要底层操作系统配置更高的文件句柄数量限制。这更多的是一个配置问题。我们曾经见到过,在生产环境Kafka集群中,每个broker打开的文件句柄数量超过30,000。
更多地分区会导致更高的不可用性
Kafka通过多副本复制技术,实现kafka集群的高可用和稳定性。每个partition都会有多个数据副本,每个副本分别存在于不同的broker。所有的数据副本中,有一个数据副本为Leader,其他的数据副本为follower。在kafka集群内部,所有的数据副本皆采用自动化的方式进行管理,并且确保所有的数据副本的数据皆保持同步状态。不论是producer端还是consumer端发往partition的请求,皆通过leader数据副本所在的broker进行处理。当broker发生故障时,对于leader数据副本在该broker的所有partition将会变得暂时不可用。Kafka将会自动在其他数据副本中选择出一个leader,用于接收客户端的请求。这个过程由kafka controller节点broker自动完成,主要是从Zookeeper读取和修改受影响partition的一些元数据信息。在当前的kafka版本实现中,对于zookeeper的所有操作都是由kafka controller来完成的(serially的方式)。
在通常情况下,当一个broker有计划地停止服务时,那么controller会在服务停止之前,将该broker上的所有leader一个个地移走。由于单个leader的移动时间大约只需要花费几毫秒,因此从客户层面看,有计划的服务停机只会导致系统在很小时间窗口中不可用。(注:在有计划地停机时,系统每一个时间窗口只会转移一个leader,其他leader皆处于可用状态。)
然而,当broker非计划地停止服务时(例如,kill -9方式),系统的不可用时间窗口将会与受影响的partition数量有关。假如,一个2节点的kafka集群中存在2000个partition,每个partition拥有2个数据副本。当其中一个broker非计划地宕机,所有1000个partition同时变得不可用。假设每一个partition恢复时间是5ms,那么1000个partition的恢复时间将会花费5秒钟。因此,在这种情况下,用户将会观察到系统存在5秒钟的不可用时间窗口。
更不幸的情况发生在宕机的broker恰好是controller节点时。在这种情况下,新leader节点的选举过程在controller节点恢复到新的broker之前不会启动。Controller节点的错误恢复将会自动地进行,但是新的controller节点需要从zookeeper中读取每一个partition的元数据信息用于初始化数据。例如,假设一个kafka集群存在10,000个partition,从zookeeper中恢复元数据时每个partition大约花费2ms,则controller的恢复将会增加约20秒的不可用时间窗口。
通常情况下,非计划的宕机事件发生的情况是很少的。如果系统可用性无法容忍这些少数情况的场景,我们最好是将每个broker的partition数量限制在2,000到4,000,每个kafka集群中partition的数量限制在10,000以内。
越多的分区可能增加端对端的延迟
Kafka端对端延迟定义为producer端发布消息到consumer端接收消息所需要的时间。即consumer接收消息的时间减去producer发布消息的时间。Kafka只有在消息提交之后,才会将消息暴露给消费者。例如,消息在所有in-sync副本列表同步复制完成之后才暴露。因此,in-sync副本复制所花时间将是kafka端对端延迟的最主要部分。在默认情况下,每个broker从其他broker节点进行数据副本复制时,该broker节点只会为此工作分配一个线程,该线程需要完成该broker所有partition数据的复制。经验显示,将1000个partition从一个broker到另一个broker所带来的时间延迟约为20ms,这意味着端对端的延迟至少是20ms。这样的延迟对于一些实时应用需求来说显得过长。
注意,上述问题可以通过增大kafka集群来进行缓解。例如,将1000个分区leader放到一个broker节点和放到10个broker节点,他们之间的延迟是存在差异的。在10个broker节点的集群中,每个broker节点平均需要处理100个分区的数据复制。此时,端对端的延迟将会从原来的数十毫秒变为仅仅需要几毫秒。
根据经验,如果你十分关心消息延迟问题,限制每个broker节点的partition数量是一个很好的主意:对于b个broker节点和复制因子为r的kafka集群,整个kafka集群的partition数量最好不超过100*b*r个,即单个partition的leader数量不超过100.
越多的partition意味着需要客户端需要更多的内存
在最新发布的0.8.2版本的kafka中,我们开发了一个更加高效的Javaproducer。新版producer拥有一个比较好的特征,他允许用户为待接入消息存储空间设置内存大小上限。在内部实现层面,producer按照每一个partition来缓存消息。在数据积累到一定大小或者足够的时间时,积累的消息将会从缓存中移除并发往broker节点。
如果partition的数量增加,消息将会在producer端按更多的partition进行积累。众多的partition所消耗的内存汇集起来,有可能会超过设置的内容大小限制。当这种情况发生时,producer必须通过消息堵塞或者丢失一些新消息的方式解决上述问题,但是这两种做法都不理想。为了避免这种情况发生,我们必须重新将produder的内存设置得更大一些。
根据经验,为了达到较好的吞吐量,我们必须在producer端为每个分区分配至少几十KB的内存,并且在分区数量显著增加时调整可以使用的内存数量。
类似的事情对于consumer端依然有效。Consumer端每次从kafka按每个分区取出一批消息进行消费。消费的分区数越多,需要的内存数量越大。尽管如此,上述方式主要运用于非实时的应用场景。
总结
通常情况下,kafka集群中越多的partition会带来越高的吞吐量。但是,我们必须意识到集群的partition总量过大或者单个broker节点partition过多,都会对系统的可用性和消息延迟带来潜在的影响。未来,我们计划对这些限制进行一些改进,让kafka在分区数量方面变得更加可扩展。
英文原文:http://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/
如何为Kafka集群选择合适的Partitions数量的更多相关文章
- 如何为Kafka集群确定合适的分区数以及分区数过多带来的弊端
通过之前的文章<Kafka分区分配策略>和<Kafka高性能揭秘>,我们了解到:Kafka高吞吐量的原因之一就是通过partition将topic中的消息保存到Kafka集群中 ...
- 为你的 Hadoop 集群选择合适的硬件
随着Apache Hadoop的起步,云客户的增多面临的首要问题就是如何为他们新的的Hadoop集群选择合适的硬件. 尽管Hadoop被设计为运行在行业标准的硬件上,提出一个理想的集群配置不想提供硬件 ...
- 为Hadoop集群选择合适的硬件配置
随着Apache Hadoop的起步,云客户的增多面临的首要问题就是如何为他们新的的Hadoop集群选择合适的硬件. 尽管Hadoop被设计为运行在行业标准的硬件上,提出一个理想的集群配置不想提供硬件 ...
- kafka 集群
在kafka中,我们能创建多种类型的集群,一般如下: 单节点——单个broker集群 单节点——多broker集群 多结点——多broker集群 kafka集群中主要有五个组件: Topic:主题主要 ...
- kafka集群原理介绍
目录 kafka集群原理介绍 (一)基础理论 二.配置文件 三.错误处理 kafka集群原理介绍 @(博客文章)[kafka|大数据] 本系统文章共三篇,分别为 1.kafka集群原理介绍了以下几个方 ...
- Apache Kafka 集群部署指南
公众号关注 「开源Linux」 回复「学习」,有我为您特别筛选的学习资料~ Kafka基础 消息系统的作用 应该大部分小伙伴都清楚,用机油装箱举个例子. 所以消息系统就是如上图我们所说的仓库,能在中间 ...
- Kafka1 利用虚拟机搭建自己的Kafka集群
前言: 上周末自己学习了一下Kafka,参考网上的文章,学习过程中还是比较顺利的,遇到的一些问题最终也都解决了,现在将学习的过程记录与此,供以后自己查阅,如果能帮助到其他人,自然是更好的. ...
- ELK+Kafka集群日志分析系统
ELK+Kafka集群分析系统部署 因为是自己本地写好的word文档复制进来的.格式有些出入还望体谅.如有错误请回复.谢谢! 一. 系统介绍 2 二. 版本说明 3 三. 服务部署 3 1) JDK部 ...
- Kafka集群的安装和使用
Kafka是一种高吞吐量的分布式发布订阅的消息队列系统,原本开发自LinkedIn,用作LinkedIn的活动流(ActivityStream)和运营数据处理管道(Pipeline)的基础.现在它已被 ...
随机推荐
- 网上搜集的jq常用代码
1. 设置IE特有的功能: if ($.browser.msie) { //do something... } 2. 使用jQuery来代替一个元素: $('#thatdiv').replaceWi ...
- MySQl的几个配置项
对对于MySQL的日志功能,我们可以完全自己控制到底写还是不写.一般来说,binlog我们一般会开启,而对于慢查询我们一般会在开发的时候调试和观 察SQL语句的执行速度.但今天发现一个问题.在使用sh ...
- git学习笔记03-本地git常用操作及原理-文件增删改
1.查看git状态 git status 这个可以告诉我们对git做了哪些操,比如增删改 2.既然我们修改了东西,有的时候想看看修改了什么,毕竟我们的记忆力并不如电脑 git diff 文件名 (默 ...
- LINQ之路 3:C# 3.0的语言功能(下)
在LINQ介绍一篇中,我们已经看到了隐式类型变量var,扩展方法(Extension method)和Lambda表达式的身影.没错,他们正是LINQ技术的基石,是他们让LINQ的实现成为可能,并且简 ...
- ubuntu 安装遇到黑屏
1.安装了ubuntu之后,进入登录页面,然后用输入密码后就黑屏了,按ctrl+alt+f1都没用,也进不去命令界面,查找资料后发现是必须在虚拟机->设置->硬件->显示器,上把加速 ...
- phpStorm快捷键
1.快速寻找方法,变量定义处:ctrl + b或者ctrl+单击 2. 移动视图,方便快捷的移动代码窗口: ctrl + up, down 3. 代码方法间快速跳转:alt + up, down
- Nexus4_文件名乱码
1. 官方的出厂映像 for Android4.4:occam-krt16s-factory-2006f418.tgz 2. 自己编译的 Android-4.4_r1 (AOSP on Mako) 映 ...
- BUAA & ICT 夏令营之旅
我还只有二十几岁,总应该相信点什么吧. ================================ 7.10午后坐火车赶到北京.一路上火车行驶在茫茫云海里.车窗外的世界是这样子的:一片广袤的原野 ...
- (转)Web自动化测试中的接口测试
1.背景 1.1 Web程序中的接口 1.1.1 典型的Web设计架构 web是实现了基于网络通信的浏览器客户端与远程服务器进行交互的应用,通常包括两部分:web服务器和web客户端.web客户端的应 ...
- 巴科斯范式和sql语言
查询Mysql帮助文档,如何写SQL语句的时候,需要注意SQL语法,这里就需要知道BNF巴科斯范式. 巴科斯范式:BNF用于描述计算机语言.基本的规则如下: 尖括号<> 内包含的为必选项. ...