[BZOJ] 2431 逆序对数列
Time Limit: 5 Sec Memory Limit: 128 MB
Submit: 2611 Solved: 1526
[Submit][Status][Discuss]
Description
对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?
Input
第一行为两个整数n,k。
Output
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
Sample Input
4 1
Sample Output
3
样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
100%的数据 n<=1000,k<=1000
HINT
Source
Day1
先想到区间dp,发现只记录前缀就行,所以二维就可以解决。
f[i][j],前i个数,j个逆序对的方案数。
对于新加入的i+1,可以造成i+1种逆序对,所以枚举前面的就行了。
先写的暴力版本,TLE两个点,一算10000*1000没爆int,把mod放外面,快了不少,过了一个点,然后循环展开,不开o2也跑得飞快(相较朴素暴力…)
#include<iostream>
#include<cstdio>
using namespace std;
int n,k;
int f[1005][1005]={1};
int main(){
scanf("%d%d",&n,&k);
for(register int i=1;i<=n;i++){
for(register int j=0;j<=k;j++){
int l=0;
for(l=0;l<i-8;l+=8){
if(j<l) continue;
f[i][j]+=f[i-1][j-l];
if(j<l+1) continue;
f[i][j]+=f[i-1][j-l-1];
if(j<l+2) continue;
f[i][j]+=f[i-1][j-l-2];
if(j<l+3) continue;
f[i][j]+=f[i-1][j-l-3];
if(j<l+4) continue;
f[i][j]+=f[i-1][j-l-4];
if(j<l+5) continue;
f[i][j]+=f[i-1][j-l-5];
if(j<l+6) continue;
f[i][j]+=f[i-1][j-l-6];
if(j<l+7) continue;
f[i][j]+=f[i-1][j-l-7];
}
for(l;l<i;l++){
if(j<l) continue;
f[i][j]+=f[i-1][j-l];
}
f[i][j]%=10000;
}
}
printf("%d",f[n][k]);
return 0;
}
正解是前缀和优化,每次更新都是加一段连续区间的值,可以用前缀和降复杂度。
#include<iostream>
#include<cstdio>
using namespace std;
const int MAXN=1005;
const int MOD=10000;
int dp[MAXN][MAXN];
int n,k,ans,sum;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) dp[i][0]=1;
for(int i=2;i<=n;i++)
{
sum=0;
for(int j=0;j<=k;j++)
{
(sum+=dp[i-1][j])%MOD;
dp[i][j]=sum%MOD;
if(j-i+1>=0)((sum-=dp[i-1][j-i+1])+=MOD)%MOD;
}
}
printf("%d\n",dp[n][k]);
return 0;
}
[BZOJ] 2431 逆序对数列的更多相关文章
- BZOJ 2431 逆序对数列 DP
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MB Description 对于一个数列{ai},如果有i< j且ai> ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- bzoj2431:[HAOI2009]逆序对数列
单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- 【BZOJ2431】逆序对数列(动态规划)
[BZOJ2431]逆序对数列(动态规划) 题面 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组 ...
- P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
随机推荐
- hdu4608 I-number
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4608 题意:给定一个数X,注意X是个大数,X的长度不超过1e5. 让你求出一个Y,满足三个条件,Y&g ...
- NOIp 2014 寻找道路【图的遍历/最短路】By cellur925
题目传送门 比较裸的图论,结果自己还是没做出来,我真菜. 我们根据题意,只要把不能通向终点的点求出,然后再分别以这些点为起点,求出它们能到达的点,这些点也不能在路径上. 之后跑一个最短路即可. 注意以 ...
- 【微信公众号开发】根据openId群发消息
根据开发文档可知,只要使用POST方式提交固定格式的json字符串到那个地址即可.这里我写的是最简单的文本 第一步:建立对应的实体类. package cn.sp.bean; import java. ...
- Canny检测理解和Matlab实现
图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值. 1.Canny边缘检测的基本特征 (1) ...
- 51nod 1134最长递增子序列
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素 ...
- Access OLE对象和附件的区别
OLE 对象 来自 Office 和基于 Windows 的程序的图像.文档.图形和其他对象 最多可存储 2GB 数据(此大小限制适用于所有 Access 数据库).请记住,添加 2GB 数据会导致数 ...
- 【转】Java中,&&与&,||与|的区别
转自:http://blog.csdn.net/lishiyuzuji/article/details/8116516 在Java的逻辑运算符中,有这么四类:&&(短路与),& ...
- android开发学习——Mina框架
Apache Mina Server 是一个网络通信应用框架,对socket进行了封装. http://www.cnblogs.com/moonandstar08/p/5475766.html htt ...
- 【Hibernate】多对多关系的表达
User.hbm.xml <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate ...
- [BZOJ1085][SCOI2005]骑士精神 搜索
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1085 大的思路是迭代加深搜索,我们加一个明显的剪枝,当棋盘中位置不对的骑士的数目加上已经走 ...