[BZOJ] 2431 逆序对数列
Time Limit: 5 Sec Memory Limit: 128 MB
Submit: 2611 Solved: 1526
[Submit][Status][Discuss]
Description
对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?
Input
第一行为两个整数n,k。
Output
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
Sample Input
4 1
Sample Output
3
样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
100%的数据 n<=1000,k<=1000
HINT
Source
Day1
先想到区间dp,发现只记录前缀就行,所以二维就可以解决。
f[i][j],前i个数,j个逆序对的方案数。
对于新加入的i+1,可以造成i+1种逆序对,所以枚举前面的就行了。
先写的暴力版本,TLE两个点,一算10000*1000没爆int,把mod放外面,快了不少,过了一个点,然后循环展开,不开o2也跑得飞快(相较朴素暴力…)
#include<iostream>
#include<cstdio>
using namespace std;
int n,k;
int f[1005][1005]={1};
int main(){
scanf("%d%d",&n,&k);
for(register int i=1;i<=n;i++){
for(register int j=0;j<=k;j++){
int l=0;
for(l=0;l<i-8;l+=8){
if(j<l) continue;
f[i][j]+=f[i-1][j-l];
if(j<l+1) continue;
f[i][j]+=f[i-1][j-l-1];
if(j<l+2) continue;
f[i][j]+=f[i-1][j-l-2];
if(j<l+3) continue;
f[i][j]+=f[i-1][j-l-3];
if(j<l+4) continue;
f[i][j]+=f[i-1][j-l-4];
if(j<l+5) continue;
f[i][j]+=f[i-1][j-l-5];
if(j<l+6) continue;
f[i][j]+=f[i-1][j-l-6];
if(j<l+7) continue;
f[i][j]+=f[i-1][j-l-7];
}
for(l;l<i;l++){
if(j<l) continue;
f[i][j]+=f[i-1][j-l];
}
f[i][j]%=10000;
}
}
printf("%d",f[n][k]);
return 0;
}
正解是前缀和优化,每次更新都是加一段连续区间的值,可以用前缀和降复杂度。
#include<iostream>
#include<cstdio>
using namespace std;
const int MAXN=1005;
const int MOD=10000;
int dp[MAXN][MAXN];
int n,k,ans,sum;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) dp[i][0]=1;
for(int i=2;i<=n;i++)
{
sum=0;
for(int j=0;j<=k;j++)
{
(sum+=dp[i-1][j])%MOD;
dp[i][j]=sum%MOD;
if(j-i+1>=0)((sum-=dp[i-1][j-i+1])+=MOD)%MOD;
}
}
printf("%d\n",dp[n][k]);
return 0;
}
[BZOJ] 2431 逆序对数列的更多相关文章
- BZOJ 2431 逆序对数列 DP
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MB Description 对于一个数列{ai},如果有i< j且ai> ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- bzoj2431:[HAOI2009]逆序对数列
单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- 【BZOJ2431】逆序对数列(动态规划)
[BZOJ2431]逆序对数列(动态规划) 题面 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组 ...
- P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
随机推荐
- node 中mongoose使用validate和密码加密的问题
在今天一直被一个问题困扰,就算是使用mongoose的alidate的时候想要限制密码的位数,比如不能少于几位,但是一直出错. 最后发现原来使用validate的时候,是在数据将要存入数据库的时候,因 ...
- Sql Server 查询重复记录
参考网址:http://database.51cto.com/art/201103/250046.htm SQL Server数据库多种方式查找重复记录 select * from dbo.T0058 ...
- html5 canvas+js实现ps钢笔抠图(速抠图 www.sukoutu.com)
html5 canvas+js实现ps钢笔抠图(速抠图 www.sukoutu.com) 根据html5 canvas+js实现ps钢笔抠图的实现,aiaito 开发者开发了一套在线抠图工具,速抠 ...
- Ruby模块与类
Ruby是单一继承,一个类只能有一个直接的母类 Mix-in 模式来处理复合需求 多重包含: 由下往上回溯,重复的只看最上方的 换句话说,程序由上往下执行,由具体到抽象,第二次发现同一个模块 ...
- HDU1253:胜利大逃亡
传送门 题意 逃离迷宫 分析 用优先队列和队列都可以,但是我vis数组写在取队列首节点就MLE了,放在放入节点的地方就ac了,看来是一种固定写法,在放入节点的地方判断,可以防止放入无效点到队列,防止队 ...
- nginx静态资源服务器简单配置
有时候我们可以把服务器的一些文件放在固定目录以便下载,比如image,css,js等.就可以使用nginx转发静态资源. 参考链接:https://blog.csdn.net/name_is_wl/a ...
- Poj 3436 ACM Computer Factory (最大流)
题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...
- Web自动化测试框架-PO模式
Web自动化测试框架(WebTestFramework)是基于Selenium框架且采用PageObject设计模式进行二次开发形成的框架. 一.适用范围:传统Web功能自动化测试.H5功能自动化测试 ...
- Rocketmq Broker启动网卡顺序问题
方法一.修改网卡名称,因为网卡顺序是通过名称排列的 方法二.指定broker使用IP echo "brokerIP1=192.168.1.220" > conf/broker ...
- Sping Boot返回Json格式自定义
转载请注明http://www.cnblogs.com/majianming/p/8491020.html 在写项目过程中,遇到了需要定义返回的json字段格式的问题 例如在实体属性中,我有一个字段是 ...