Description

小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨。股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N。在疯涨的K天中小T观察 到:除第一天外每天的股价都比前一天高,且高出的价格(即当天的股价与前一天的股价之差)不会超过M,M为正整数。并且这些参数满足M(K- 1)<N。
小T忘记了这K天每天的具体股价了,他现在想知道这K天的股价有多少种可能

Input

只有一行用空格隔开的四个数:N、K、M、P。对P的说明参见后面“输出格式”中对P的解释。
输入保证20%的数据M,N,K,P≤20000,保证100%的数据M,K,P≤109,N≤1018 。

Output

仅包含一个数,表示这K天的股价的可能种数对于P的模值。【输入输出样例】

Sample Input

7 3 2 997

Sample Output

16
【样例解释】
输出样例的16表示输入样例的股价有16种可能:
{1,2,3},{1,2,4},{1,3,4},{1,3,5}, {2,3,4},{2,3,5},{2,4,5},{2,4,6}, {3,4,5},{3,4,6},{3,5,6},{3,5,7},{4,5,6},{4,5,7},{4,6,7},{5,6,7}
 

 #include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#define ll long long
using namespace std; ll m,n,k,p; ll pow(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&) ans=(ans*a)%p;
b>>=;
a=(a*a)%p;
}
return ans;
}
int main()
{
scanf("%lld%lld%lld%lld",&n,&k,&m,&p);
if (k==)
{
printf("%lld\n",n%p);
return ;
}
ll x=(n%p*pow(m,k-))%p,y=((m*(m+)/)%p*pow(m,k-))%p*(k-)%p;
ll ans=x-y;
ans=(ans+p)%p;
printf("%lld",ans);
}

bzoj3142[Hnoi2013]数列 组合的更多相关文章

  1. [BZOJ3142][HNOI2013]数列(组合数学)

    3142: [Hnoi2013]数列 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1721  Solved: 854[Submit][Status][ ...

  2. [BZOJ3142][HNOI2013]数列(组合)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...

  3. BZOJ3142 [Hnoi2013]数列

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  4. bzoj千题计划293:bzoj3142: [Hnoi2013]数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...

  5. BZOJ3142 HNOI2013数列(组合数学)

    考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...

  6. BZOJ3142 [Hnoi2013]数列 【组合数学】

    题目链接 BZOJ3142 题解 题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\) 题目中\(K(M - 1) < N\)的限制 ...

  7. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  8. 【BZOJ3142】[HNOI2013]数列

    [BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...

  9. [洛谷P3228] [HNOI2013]数列

    洛谷题目链接:[HNOI2013]数列 题目描述 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到: ...

随机推荐

  1. Design Patterns Uncovered: The Chain Of Responsibility Pattern

    Chain of Responsibility in the Real World The idea of the Chain Of Responsibility is that it avoids ...

  2. window服务 调试步骤

    方法一: 1.编译windows服务项目工程 2.把服务注册到系统服务上 3.在visual studio 编辑器中,打断点,用 Debug  进程调试 方法二: 在Onstart 方法中,加上 De ...

  3. JVM内存各个区域分工简单介绍

    JVM内存各个区域简单介绍: 程序计数器:程序计数器是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器. 在使用多线程时,为了线程切换后能恢复到正确的执行位置,每条线程都需要有个独立 ...

  4. Spring-bean(零)

    内容提要:红为1,黄2,绿3 -----配置形式:基于xml文件的方式:基于注解的方式 -----Bean的配置方式:通过全类名(反射),通过工厂方法(静态工厂方法&实例工厂方法),Facto ...

  5. TensorFlow 安装 Win10 Python+GPU

    前叙:有灵魂的程序都是每一个程序员的最终目标.TensorFlow了解下? 打算花几个月学机器学习,TensorFlow是很好的选择,折腾了会环境,略有心得分享下. 环境:win10 Python:3 ...

  6. ubuntu破解密码方法

    摘要: 开机按住任何键(shift)停住grub菜单,进入advanced option for ubuntu,出现的菜单中,光标移动至…(recovery mode)按E进入编辑,找到ro reco ...

  7. iOS端架构、基本组成与使用说明

    一. app整体描述 app的描述:需求文档+接口文档+程序架构. 说明:新入手的开发人员必须拿到这三个说明文档才能整体了解app功能. 二.app架构描述 1.架构视图 2.分层结构说明 [1] a ...

  8. 枚举 || CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution

    给出N*M矩阵,对于该矩阵有两种操作: 1.交换两列,对于整个矩阵只能操作一次 2.每行交换两个数. 交换后是否可以使每行都递增. *解法:N与M均为20,直接枚举所有可能的交换结果,进行判断 每次枚 ...

  9. dos command

    dos command md 创建目录 rd 删除目录 cd\ 返回到根目录 cd.. 返回到上一级目录 cd 进入指定目录 dir 列出当前目录下的文件夹及文件 echo 文件内容>文件名称. ...

  10. python爬虫---从零开始(四)BeautifulSoup库

    BeautifulSoup是什么? BeautifulSoup是一个网页解析库,相比urllib.Requests要更加灵活和方便,处理高校,支持多种解析器. 利用它不用编写正则表达式即可方便地实现网 ...