题目大意是给定N个数的集合,从这个集合中找到一个非空子集,使得该子集元素和的绝对值最小。假设有多个答案,输出元素个数最少的那个。

N最多为35,假设直接枚举显然是不行的。

可是假设我们将这些数分成两半后再枚举的话,最多有2^18(262144),此时我们两半枚举后的结果进行排序后再二分搜索一下就能够了。复杂度为O(nlogn)
n最多2^18。

#include <stdio.h>
#include <vector>
#include <math.h>
#include <string.h>
#include <string>
#include <iostream>
#include <queue>
#include <list>
#include <algorithm>
#include <stack>
#include <map> using namespace std; struct MyStruct
{
long long res;
int i;
}; int compp(const void* a1, const void* a2)
{
long long dif = ((MyStruct*)a1)->res - ((MyStruct*)a2)->res;
if (dif > 0)
{
return 1;
}
else if (dif == 0)
{
return 0;
}
else
return -1;
} MyStruct res[2][300000]; inline long long absll(long long X)
{
if (X < 0)
{
return X * (-1);
}
else
return X;
} int main()
{
int n;
#ifdef _DEBUG
freopen("d:\\in.txt", "r", stdin);
#endif
long long values[36];
while (scanf("%d", &n) != EOF)
{
if (n == 0)
{
break;
}
for (int i = 0; i < n; i++)
{
scanf("%I64d", &values[i]);
}
int maxn = n - n / 2;
int maxm = n - maxn;
memset(res, 0, sizeof(res));
for (int i = 0; i < 1 << maxn; i++)
{
res[0][i].i = i;
for (int k = 0; k < 19; k++)
{
if ((i >> k) & 1)
{
res[0][i].res += values[k];
}
}
}
qsort(res[0], 1 << maxn, sizeof(MyStruct), compp);
for (int i = 0; i < 1 << maxm; i++)
{
res[1][i].i = i;
for (int k = 0; k < 19; k++)
{
if ((i >> k) & 1)
{
res[1][i].res += values[k + maxn];
}
}
}
qsort(res[1], 1 << maxm, sizeof(MyStruct), compp);
long long minvalue = 1000000000000000LL;
int mink = 32;
int l = 0;
int r = (1 << maxm);
for (int i = 0; i < 1 << maxn; i++)
{
l = 0;
int curk = 0;
for (int k = 0; k < maxn; k++)
{
if ((res[0][i].i >> k) & 1)
{
curk++;
}
}
while (r - l > 1)
{
int mid = (l + r) / 2;
long long sum = res[1][mid].res + res[0][i].res;
if (sum > 0)
{
r = mid;
}
else
l = mid;
} l = l >= 1 ? l - 1 : l;
for (int k = l; k < (1 << maxm);k++)
{
int curm = 0;
for (int m = 0; m < maxm; m++)
{
if ((res[1][k].i >> m) & 1)
{
curm++;
}
}
if (curm == 0 && curk == 0)
{
continue;
}
long long sum = res[1][k].res + res[0][i].res;
if (absll(sum) < minvalue)
{
mink = curm + curk;
minvalue = absll(sum);
}
else if (absll(sum) == minvalue)
{
mink = min(mink, curk + curm);
}
else if (sum > 0)
{
break;
}
}
}
printf("%I64d %d\n", minvalue, mink);
}
return 0;
}

POJ3977 Subset 折半枚举的更多相关文章

  1. POJ 3977 Subset(折半枚举+二分)

    SubsetTime Limit: 30000MS        Memory Limit: 65536KTotal Submissions: 6754        Accepted: 1277 D ...

  2. poj3977(折半枚举+二分查找)

    题目链接:https://vjudge.net/problem/POJ-3977 题意:给一个大小<=35的集合,找一个非空子集合,使得子集合元素和的绝对值最小,如果有多个这样的集合,找元素个数 ...

  3. POJ 3977 - subset - 折半枚举

    2017-08-01 21:45:19 writer:pprp 题目: • POJ 3977• 给定n个数,求一个子集(非空)• 使得子集内元素和的绝对值最小• n ≤ 35 AC代码如下:(难点:枚 ...

  4. poj 3977 Subset(折半枚举+二进制枚举+二分)

    Subset Time Limit: 30000MS   Memory Limit: 65536K Total Submissions: 5721   Accepted: 1083 Descripti ...

  5. 折半枚举——poj3977

    暴力搜索超时,但是折半后两部分状态支持合并的情况,可用折半枚举算法 poj3977 给一个序列a[],从里面找到k个数,使其和的绝对值最小 经典折半枚举法+二分解决,对于前一半数开一个map,map[ ...

  6. Load Balancing 折半枚举大法好啊

    Load Balancing 给出每个学生的学分.   将学生按学分分成四组,使得sigma (sumi-n/4)最小.         算法:   折半枚举 #include <iostrea ...

  7. CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。

    1514: Packs Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 61  Solved: 4[Submit][Status][Web Board] ...

  8. NYOJ 1091 超大01背包(折半枚举)

    这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...

  9. Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))

    888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...

随机推荐

  1. Farseer.net轻量级ORM开源框架 V1.8版本升级消息

    SHA-1: 775a93cf64df3f49c83cc4f4df346afd2075a68f * 发布V1.8.0修复:Oracle的SQL生成 在没有条件时,缺少Where关键字,导致无法分页修复 ...

  2. 5.4QBXT 模拟赛 (Rank1 机械键盘 蛤蛤)

    NOIP2016提高组模拟赛 ——By wangyurzee7 中文题目名称 纸牌 杯具 辣鸡 英文题目与子目录名 cards cups spicychicken 可执行文件名 cards cups ...

  3. Method Dispatch in Protocol Extensions

    We learned in the Protocol-Oriented Programming session at WWDC 2015 that Swift uses two different d ...

  4. ZXing.dll 生成二维码 C# winform net4.5

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  5. 背景渐变 background-image:linear-gradient(0deg,#fff,#ccc);

    背景渐变 background-image:linear-gradient(0deg,#fff,#ccc);

  6. CAD参数绘制多段线(com接口)

    多段线又被称为多义线,表示一起画的都是连在一起的一个复合对象,可以是直线也可以是圆弧并且它们还可以加不同的宽度. 主要用到函数说明: _DMxDrawX::PathLineTo 把路径下一个点移到指定 ...

  7. JavaSE-06 二维数组

    学习要点 二维数组的定义 二维数组内存数据结构 不规则二维数组 二维数组的定义 语法格式 格式一 数据类型[][] 数组名 = new 数据类型[m][n]; m:表示这个二维数组有多少个一维数组. ...

  8. 【原】简单shell练习(一)

    1.交互式脚本 #!/bin/bash read -p "Enter your name:" name #read提示用户输入 echo "hello $name, we ...

  9. weblogic启动 web应用ssh关闭 nohup命令

    平时我们操作linux服务器的时候,都是通过ssh远程连接,然后启动服务器上的服务的,所以有时候启动weblogic,我们关闭ssh,weblogic 服务也相应的关闭了,那么我们就只能用nohup这 ...

  10. Javascript创建对象几种方法解析

    Javascript创建对象几种方法解析 Javascript面向对象编程一直是面试中的重点,将自己的理解整理如下,主要参考<Javascript高级程序设计 第三版>,欢迎批评指正. 通 ...