$n \leq 200000$种互不相同的矩形,给长宽和数量,都$\leq 1e12$,问有多少种大矩形只沿平行长和宽切正好切成这些矩形。

首先可以发现在一个合法情况下,有些矩形的位置是可以乱挪的,比如这样:

变成这样:

好我知道不一样大但您一定能懂我QAQ

就是说每个方案都一定能移动成一个单位矩阵复制若干次。这个单位矩阵中每一种块的数量就是$\frac{cnt_i}{gg}$,$gg=gcd(cnt_i)$。

然后就来判断这个单位矩阵能否构造出来。如果能构造出来,那“比例一定要好”。啥意思,首先宽$x$和宽$y$的数量比是$cnt_x:cnt_y$,长同理。所以可以枚举长(列),判相邻宽比例是否和其他列一样。也可以直接看某一种与其对应长总数的比例,和这一种的宽与总数的比例是否一样。

*Codeforces963C. Cutting Rectangle的更多相关文章

  1. Codeforces963C Cutting Rectangle 【数学】

    错了一个小地方调了一晚上.... 题目大意: 给出最多2E+5种不同的矩形,每种有它的长h和宽v还有数量d,现在你要构造大矩形,使得在上面沿着平行于长或宽的边划刀,切出来的矩形正好是给出的所有矩形.问 ...

  2. 【CF963C】Cutting Rectangle(数论,构造,map)

    题意: 思路:考虑构造最小的单位矩形然后平铺 单位矩形中每种矩形的数量可以根据比例算出来,为c[i]/d,其中d是所有c[i]的gcd,如果能构造成功答案即为d的因子个数 考虑如果要将两种矩形放在同一 ...

  3. Tinkoff Internship Warmup Round 2018 and Codeforces Round #475 (Div. 1)

    A. Alternating Sum 就是个等比数列,特判公比为 $1$ 的情况即可. #include <bits/stdc++.h> using namespace std; ; ; ...

  4. 二维剪板机下料问题(2-D Guillotine Cutting Stock Problem) 的混合整数规划精确求解——数学规划的计算智能特征

    二维剪板机下料问题(2-D Guillotine Cutting Stock Problem) 的混合整数规划精确求解——数学规划的计算智能特征 二维剪板机下料(2D-GCSP) 的混合整数规划是最优 ...

  5. [LeetCode] Perfect Rectangle 完美矩形

    Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover o ...

  6. [LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  7. [LeetCode] Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  8. [LeetCode] Rectangle Area 矩形面积

    Find the total area covered by two rectilinear rectangles in a2D plane. Each rectangle is defined by ...

  9. [LeetCode] Maximal Rectangle 最大矩形

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

随机推荐

  1. C++类构造函数、析构函数运行机理

    http://blog.sina.com.cn/s/blog_6fd68d5f0100n60h.html 前言--构造函数.析构函数的简单理解:1)构造函数---对象被创建时候调用的函数:2)析构函数 ...

  2. Java学习之初识线程

    “身之主宰便是心,心之所发便是意,意之本体便是知,意之所在便是物 --摘自阳明先生语录” 1.概念 在说线程之前我们先了解关于进程的一些知识,什么是进程? 程序一旦运行就是一个独立的进程,以windo ...

  3. python自动化基础问题解析

      (1)自动化代码中用到的设计模式: po模式(page object): 1.PO提供了一种业务流程与页面元素操作分离的模式,这使得测试代码变得更加清晰. 2.页面对象与用例分离,使得我们更好的复 ...

  4. Mysql,SqlServer,Oracle主键自动增长的设置

    在mysql中,如果把表的主键设为auto_increment类型,数据库就会自动为主键赋值.例如: CREATE TABLE google(id INT AUTO_INCREMENT PRIMARY ...

  5. AC自动机讲解+[HDU2222]:Keywords Search(AC自动机)

    首先,有这样一道题: 给你一个单词W和一个文章T,问W在T中出现了几次(原题见POJ3461). OK,so easy~ HASH or KMP 轻松解决. 那么还有一道例题: 给定n个长度不超过50 ...

  6. Ubuntu12.04安装Chrome浏览器,并添加到左侧的启动栏

    在google官网下载google chrome deb包,有32位和64位之分: 怎么判断系统是32位还是64位的,可以用以下代码: ; int *p = &a; printf(" ...

  7. 有C++特色的极乐净土

    闲的没事瞎打的 在win7下会走调,需要将win7的beep系统文件改成xp的,且主机装有蜂鸣器才能正常收听. beep文件的度盘地址(不过应该没人为了听个这个去改系统文件)(P.S.如果想要尝试,尽 ...

  8. oracle count 百万级 分页查询记要总数、总条数优化

    oracle count 百万级 分页查询记录总数.总条数优化 oracle count 百万级 查询记录总数.总条数优化 最近做一个项目时,做分页时,发现分页查询速度很慢,分页我做的是两次查询,一次 ...

  9. ios开发--常用的高效开发的宏

    本次在做项目的时候使用了下面的一些宏定义 以及 建立宏定义的一些规则.虽然只用了其中的一点点,但是还是极大的提高了开发效率.. 将这些宏放到一个头文件里然后再放到工程中,在需要使用这些宏定义的地方体检 ...

  10. APIO2019&&THUSC2019游记

    APIO2019懵十三记: day0: 早上和ljx从沈阳出发,下午一点到的首师大附. 由于工作人员中午十二点就散了,我们就先去试机了. 下午三点接到狗牌和T恤,晚上买麦当劳回如意吃. 晚上还有场模拟 ...