2031. Overturned Numbers

Time limit: 1.0 second

Memory limit: 64 MB
Little Pierre was surfing the Internet and came across an interesting puzzle:
What is the number under the car?
It took some time before Pierre solved the puzzle, but eventually he understood that there were overturned numbers 86, 88, 89, 90, and 91 in the picture and the answer was the number 87.
Now Pierre wants to entertain his friends with similar puzzles. He wants to construct a sequence of
n numbers such that its overturning produces a consecutive segment of the positive integers. Pierre intends to use one-digit integers supplemented with a leading zero and two-digit integers only.To avoid ambiguity, note that when the digits 0, 1, and
8 are overturned, they remain the same, the digits 6 and 9 are converted into each other, and the remaining digits become unreadable symbols.

Input

The only line contains the number n of integers in a sequence (1 ≤
n ≤ 99).

Output

If there is no sequence of length n with the above property, output “Glupenky Pierre” (“Silly Pierre” in Russian).Otherwise, output any of such sequences. The numbers in the sequence should be separated with a space.

Samples

input output
2
11 01
99
Glupenky Pierre

Problem Author: Nikita Sivukhin

Problem Source: Ural Regional School Programming Contest 2014

解析:题目要求翻转后为连续序列的序列,直接枚举就可以。

AC代码:

#include <bits/stdc++.h>
using namespace std; int main(){
int n;
while(scanf("%d", &n) != EOF){
if(n == 1) puts("01");
else if(n == 2) puts("11 01");
else if(n == 3) puts("06 68 88");
else if(n == 4) puts("16 06 68 88");
else puts("Glupenky Pierre");
}
return 0;
}

URAL 2031. Overturned Numbers (枚举)的更多相关文章

  1. 递推DP URAL 1586 Threeprime Numbers

    题目传送门 /* 题意:n位数字,任意连续的三位数字组成的数字是素数,这样的n位数有多少个 最优子结构:考虑3位数的数字,可以枚举出来,第4位是和第3位,第2位组成的数字判断是否是素数 所以,dp[i ...

  2. 递推DP URAL 1009 K-based Numbers

    题目传送门 题意:n位数,k进制,求个数分析:dp[i][j] 表示i位数,当前数字为j的个数:若j==0,不加dp[i-1][0]; 代码1: #include <cstdio> #in ...

  3. ural 2070. Interesting Numbers

    2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...

  4. ural 1150. Page Numbers

    1150. Page Numbers Time limit: 1.0 secondMemory limit: 64 MB John Smith has decided to number the pa ...

  5. URAL 1792. Hamming Code (枚举)

    1792. Hamming Code Time limit: 1.0 second Memory limit: 64 MB Let us consider four disks intersectin ...

  6. URAL 1002 Phone Numbers(KMP+最短路orDP)

    In the present world you frequently meet a lot of call numbers and they are going to be longer and l ...

  7. URAL 1012 K-based Numbers. Version 2(DP+高精度)

    题目链接 题意 :与1009一样,不过这个题的数据范围变大. 思路:因为数据范围变大,所以要用大数模拟,用java也行,大数模拟也没什么不过变成二维再做就行了呗.当然也可以先把所有的都进行打表,不过要 ...

  8. ural 1118. Nontrivial Numbers

    1118. Nontrivial Numbers Time limit: 2.0 secondMemory limit: 64 MB Specialists of SKB Kontur have de ...

  9. ural 1013. K-based Numbers. Version 3(动态规划)

    1013. K-based Numbers. Version 3 Let’s consider K-based numbers, containing exactly N digits. We def ...

随机推荐

  1. [ SDOI 2006 ] 保安站岗

    \(\\\) Description 给出一棵 \(n\) 个节点以 \(1\) 为根的树,一个节点的覆盖半径是 \(1\) ,点有点权 \(val_x\) . 选择一些点,使得点权和最小,同时每个节 ...

  2. offset家族基本简介

    Offset家族简介 offset这个单词本身是--偏移,补偿,位移的意思. js中有一套方便的获取元素尺寸的办法就是offset家族: offsetWidth和offsetHight 以及offse ...

  3. webSql的简单小例子

    初始化websql数据库的参数信息 var config = { name: 'my_plan', version: '', desc: 'manage my plans', size: 20 * 1 ...

  4. java设计模式之单例模式总结

    面试手写单例模式(通用版)

  5. (转)Hibernate框架基础——映射集合属性

    http://blog.csdn.net/yerenyuan_pku/article/details/52745486 集合映射 集合属性大致有两种: 单纯的集合属性,如像List.Set或数组等集合 ...

  6. 并发编程学习笔记(12)----Fork/Join框架

    1. Fork/Join 的概念 Fork指的是将系统进程分成多个执行分支(线程),Join即是等待,当fork()方法创建了多个线程之后,需要等待这些分支执行完毕之后,才能得到最终的结果,因此joi ...

  7. Spring框架系列(九)--MyBatis面试题(转载)

    1.什么是Mybatis? 1.Mybatis是一个半ORM(对象关系映射)框架,它内部封装了JDBC,开发时只需要关注SQL语句本身,不需要花费精力去处理加载驱动.创建 连接.创建statement ...

  8. 干货分享--iOS及Mac开源项目和学习资料【超级全面】

    原文出处:codecloud http://www.kancloud.cn/digest/ios-mac-study/84557

  9. Java垃圾回收是如何工作的?

    本教程是为了理解基本的Java垃圾回收以及它是如何工作的.这是垃圾回收教程系列的第二部分.希望你已经读过了第一部分:<Java 垃圾回收介绍>. Java 垃圾回收是一项自动化的过程,用来 ...

  10. ubutun 创建左面快捷方式

    #http://blog.csdn.net/jizi7618937/article/details/51012552