寒武纪camp Day6
补题进度:10/10
A(树形dp)
略
B(dp)
题意:
给出一个n个关键节点的机械手臂,最开始是竖直的,即关键点在二维平面上的坐标分别是(0,0) (0,100) (0,200) (0,300)......,然后我们每次可以选择一个关键节点把它旋转45°(当然它上面的那些点也要跟着旋转)
现在有q个询问,每个询问输入一个矩形,问最少通过多少次操作使得机械手臂的末端落到这个矩形内
n<=10,q<=1000
分析:
首先关键点转的先后顺序对结果并没有影响,所以不妨我们先转下层的,再转上层的
很自然的想法就是枚举每个关键点转了多少个45°,但是这样复杂度是8^10的,会TLE
我们考虑减少状态,我们发现转动了前i个关键点,第i个点落在某个位置的时候,前面有很多转动方法,这些状态对后面影响是一样的,但是我们每次却要去计算它
进一步发现每个可达点的坐标都可以用(100a+50sqrt(2)b,100c+50sqrt(2)d)来表示,所以我们可以把位置用四元组(a,b,c,d)来表示
于是考虑dp[i][a][b][c][d][last]表示转了前i个位置,目前终点是在(a,b,c,d),并且上面的机械手臂的朝向是last方向的最少步数
枚举每个点的转动然后计算出所有dp值就行了
C(树形dp)
题意:
求n个点m条边的无向图的最小点覆盖
2<=n<=1000,0<=m<=n+10
分析:
对于一般无向图的最小点覆盖是没有多项式解的,这题的数据范围很特殊,m<=n+10
首先如果m<=n-1,那么就是简单的树形dp,现在是在树的基础上,多出了11条边
我们考虑先去人为枚举这些额外边对应的点的选取是否,然后再做树形dp,这样就ok了
对于一条非树边(u,v),那么有三种情况:u选v不选;u不选v选;uv都选
那么这样时间复杂度就是O(3^11*n)是TLE的
我们考虑把三种情况压缩成两种:u选v不选;u随意v选
然后时间复杂度就是O(2^11*n)的了,就过了
D(博弈)
题意:
Alice和Bob进行博弈,刚开始有一个整数K,Alice可以把一个数字x变成$[\frac{x}{a1},\frac{x}{a2}]$中的一个实数,Bob可以把一个数字x变成$[\frac{x}{b1},\frac{x}{b2}]$中的一个实数,Alice和Bob轮流操作
如果某个人的某一次操作之后,数字小于1了,那么他就获胜了
给定整数k,a1,a2,b1,b2,问最终谁能获胜
1<=k<=1e9,2<=a2<=a1<=1e9,2<=b2<=b1<=1e9
分析:
[0,1)是先手必败态,我们考虑把[0,1)倍增上去直到包含k,那么我们就知道了k到底是Alice先手必胜还是Alice先手必败了
假设我们已经知道了[0,m)的Alice/Bob先手胜败情况,那么是可以转移到[0,tm)的,其中t=min(a2,b2),要怎么转移呢?
对于[0,m)中的Alice先手必胜区间[l,r),那么[l*b2,r*b1)是[0,tm)的Bob先手必败态,其它同理
我们需要记录下所有的Alice、Bob胜败区间,去用区间更新,具体细节见代码
E(计算几何)
略
F(构造)
略
G(fibonacci循环节)
题意:
求fibonacci在模p意义下的循环节,p不一定是质数
2<=p<=2e9
分析:
我们把p分解成$p_1^{k_1}p_2^{k_2}p_3^{k_3}...$,然后对每个$p_i^{k_i}$求出循环节,然后求个lcm就是结果了
模$p_i^{k_i}$的循环节就是模$p_i$的循环节乘上$p_i^{k_i-1}$
根据结论,模一个质数$p_i$的循环节一定是(p+1)(p-1)的因数,枚举因子就行了
时间复杂度是O(sqrt(p)*log(p))
H(dp套dp+轮廓线)
题意:
给出一个n行m列的矩阵,每个矩阵元素是0/1/2,现在要从(1,1)走到(n,m),每步只能向下走一步或者向右走一步,将走过的路上的数字加起来作为你的得分,假设最大得分是k
现在给定n,m,你需要回答对于k=0,1,2,...,2(n+m-1),有多少种n行m列的矩阵,最大得分是k
1<=n,m<=6
分析:
考虑一个简单的问题,给定这个矩阵,如何求出最大得分?这是一个很简单的dp问题,dp[i][j]表示走到(i,j)的最大得分
现在我们要去统计方案数,我们需要把dp[i][j]作为状态放到我们的计数dp里
dp[i][j][state]表示填数填到了(i,j),dp状态是state情况下的方案数,其中state应该是一个二维数组
那么时间复杂度是O(n*m*23^(nm))的,是很爆炸的
我们仔细分析发现对(i,j)有影响的dp状态只又(i,j)轮廓线上的所有位置,也就是说只有m个,所以我们可以做轮廓线dp
这样时间复杂度就是O(n*m*23^m)
我们不用数组去存那个轮廓线,用vector去存那个轮廓线,那么状态就会继续大大减少
但是这样还是比较慢,没法在几秒内跑出来的,但没关系,打个表就可以了
I(贪心)
题意:
给出n个a区间和m个b区间[li,ri]。你需要从b区间中选择最少的区间,使得每个a区间都和你选出的某个b区间有交。
n,m<=2000,li,ri<=1e9
分析:
首先把a中包含其它区间的区间删除,把b中被其它区间包含的区间删除,那么a,b中的区间按照左端点上升排序,右端点也是上升的了
对于b区间的删除很好办,对于a区间的删除只需要拿个栈来维护就行了
删完之后就简单的贪心就行了
时间复杂度O(nlogn)
J(贪心)
题意:
给出一个n的排列p,你可以交换相邻的数让它从小到大排列,最少交换次数显然是逆序对的个数k。问通过k步交换使它从小到大的方案是否唯一。
n<=1e5
分析:
如果某一时刻,可以交换的相邻逆序对有两个,那么就是不唯一了
仔细分析发现,唯一当且仅当只有一个数字偏离了正确的相对位置,即最长公共子序列的长度是n-1
寒武纪camp Day6的更多相关文章
- 寒武纪camp网络测试赛
寒武纪camp网络测试赛 地址:oj点我进入 A(树形dp+树链剖分) 题意: 分析: 考虑树形dp,f0(x)和f1(x)分别表示以x为根的子树,不取x点或取x点的最大合法子集的元素个数 那么对于一 ...
- Wannafly summer camp Day6 - D 区间权值
这道题实在是不该,我在化式子的时候,多此一举,把式子进行累加,导致自己当时化的式子是错的,这样导致自己卡了很久,也没想到好的思路,赛后重新分析一波,感觉巨™简单...难受的一逼. 这道题的关键在于,W ...
- 寒武纪camp Day5
补题进度:6/10 A(状压dp) 题意: 有n个数字1,2,...,n,有m个限制(a,b),表示至少要有一个数字a排在数字b的前面 你需要构造出一个含有数字1~n的序列,数字可以重复多次,要求该序 ...
- 寒武纪camp Day4
补题进度:7/11 A(博弈论) 略 B 待填坑 C(贪心) 题意: 一个序列是good的当且仅当相邻两个数字不相同.给出一个长度为n的数列,每个数字是ai.定义一种操作就是把a中某个元素拿到首位去, ...
- 寒武纪camp Day3
补题进度:9/10 A(多项式) 题意: 在一个长度为n=262144的环上,一个人站在0点上,每一秒钟有$\frac{1}{2}$的概率待在原地不动,有$\frac{1}{4}$的概率向前走一步,有 ...
- 寒武纪camp Day2
补题进度:8/10 A(计数+BIT) 题意: 给一个长度为n的数组a[],任意选0<=i<=j<n,将a[i]~a[j]从小到大排序,形成新的数组.问有多少个不同的新数组. N,a ...
- 寒武纪camp Day1
补题进度:8/10 A(组合计数) 题意: 一个人站在数轴原点,每秒有1/4概率向前走一步,1/4概率向后走一步,1/2概率不动,问t秒后在p位置的概率. t,p<=100000 分析: 枚举不 ...
- Python之路,Day6 - Python基础6
本节大纲: 模块介绍 time &datetime模块 random os sys shutil json & picle shelve xml处理 yaml处理 configpars ...
- day6
开发一个简单的python计算器 实现加减乘除及拓号优先级解析 用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568 ...
随机推荐
- vSphere Client用户名密码保存记录
vSphere Client在访问ESXi主机或vCenter后是默认不保存登录用户名和密码的,不过可以通过修改配置文件来保存,方便访问连接. 方法如下: 打开配置文件路径(实际安装路径):D:\Pr ...
- Python中Pickle模块的dump()方法和load()方法
Python中的Pickle模块实现了基本的数据序列与反序列化. 经常遇到在Python程序运行中得到了一些字符串.列表.字典等数据,想要长久的保存下来,方便以后使用,而不是简单的放入内存中关机断电就 ...
- Failed to load class “org.slf4j.impl.StaticLoggerBinder”
背景: 在配置使用Hibernate的时候遇到了这个问题, 然后就很头疼. SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerB ...
- pc端移动端兼容的大图轮播
body, html { width: 100%; } * { margin:; padding:; list-style: none; } .haha { list-style-type: none ...
- (16) Cloudflare pki公钥基础设施
该工具组共有8个工具 1.cfssl 常用的可用指令: sign signs a certificate bundle build a certificate bundle genkey genera ...
- Shell函数和正则表达式
1. shell函数 shell中允许将一组命令集合或语句形成一段可用代码,这些代码块称为shell函数.给这段代码起个名字称为函数名,后续可以直接调用该段代码. 格式: func() { #指定 ...
- 二手GTX650
某鱼入手一二手华硕显卡GTX650 店主信誉挺高的,到手图片 我K,被骗了翻新的假显卡,华硕没有过这个样式的GTX650啊,还是新的散热风扇及前挡板,不管了先把风扇拆了,竟然连风扇散热硅脂都是刚刚涂上 ...
- Ubuntu配置SSH服务器
SSH 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定:SSH 为建立在应用层和传输层基础上的安全协议.SSH 是目前较可靠,专为远 ...
- 《算法导论》— Chapter 9 中位数和顺序统计学
序 在算法导论的第二部分主要探讨了排序和顺序统计学,第六章~第八章讨论了堆排序.快速排序以及三种线性排序算法.该部分的最后一个章节,将讨论顺序统计方面的知识. 在一个由n个元素组成的集合中,第i个顺序 ...
- jQuery.data() 的实现方式
jQuery.data() 的作用是为普通对象或 DOM Element 附加(及获取)数据. 下面将分三个部分分析其实现方式: 1. 用name和value为对象附加数据:即传入三个参数,第 ...