P2339 提交作业usaco

题目背景

usaco

题目描述

贝西在哞哞大学选修了 C 门课,她要把所有作业分别交给每门课的老师,然后去车站和同学们一起回家。每个老师在各自的办公室里,办公室要等他们下课后才开,第 i 门课的办公室将在 Ti 分钟后开放。

所有的办公室都在一条笔直的走廊上,这条走廊长 H 个单位,一开始贝西在走廊的尽头一侧,位于坐标为 0 的地方。第 i 门课的办公室坐标位于坐标为 Xi 的地方,车站的坐标为 B。贝西可在走廊上自由行走,每分钟可以向右或者向左移动一个单位,也可以选择停着不移动。如果走到一间已经开门的办公室,贝西就可以把相应的作业交掉了,走进办公室交作业是不计时间的。请帮助贝西计算一下,从她开始交作业开始,直到到交完所有作业,再走到车站,最短需要多少时间时间。

输入输出格式

输入格式:

输入格式

• 第一行:三个整数 C, H 和 B, 1 ≤ C ≤ 1000 , 1 ≤ H ≤ 1000 , 0 ≤ B ≤ H

• 第二行到 C + 1 行:第 i + 1 行有两个整数 Xi 和 Ti, 0 ≤ Xi ≤ H , 0 ≤ Ti ≤ 10000

输出格式:

输出格式

• 单个整数,表示贝西交完作业后走到车站的最短时间

输入输出样例

输入样例#1: 复制

4 10 3
8 9
4 21
3 16
8 12
输出样例#1: 复制

22

说明

走到坐标 8 处,第 9 分钟交一本作业,等到第 12 分钟时,交另一本作业。再走到坐标 4 处交作业,最后走到坐标 3 处,交最后一本作业,此地就是车站所在位置,共用时 22 分钟

/*
直接想dp不好设状态,那就看看有什么性质......
容易想到把教室排序,如果一段区间[l,r]
先选外侧的教室交作业一定比先选里面的再出来再去另一边更优
那么答案就可以从外往里递推而来
再就是这种也可以向左也可以向右的题目一般来说都是转化为区间dp
f[l][r][0/1]表示决策到[l,r]这段区间,区间外的都已满足,选则l/r交作业的最短时间
转移看从那个教室移动过来即可。
*/
#include<bits/stdc++.h> #define N 1007 using namespace std;
int n,m,ans,cnt;
int f[N][N][];
struct node{
int Time,pos;
bool operator < (const node &a) const{
return pos<a.pos;
} }a[N]; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int main()
{
int C,H,B;
C=read();H=read();B=read();
for(int i=;i<=C;i++)
a[i].pos=read(),a[i].Time=read();
sort(a+,a+C+);
memset(f,/,sizeof f);
f[][C][]=max(a[].Time,a[].pos);
f[][C][]=max(a[C].Time,a[C].pos); for(int L=C-;L>=;L--) for(int i=;i+L<=C;++i)
{
int j=i+L;
f[i][j][]=min(max(f[i-][j][]+a[i].pos-a[i-].pos,a[i].Time),
max(f[i][j+][]+ a[j+].pos-a[i].pos,a[i].Time));
f[i][j][]=min(max(f[i-][j][]+a[j].pos - a[i-].pos,a[j].Time),
max(f[i][j+][]+ a[j+].pos-a[j].pos,a[j].Time));
}
ans=0x3f3f3f3f;
for (int i=;i<=C;i++)
ans=min(ans,f[i][i][]+abs(a[i].pos-B));
printf("%d\n",ans);
return ;
}

P2339 提交作业usaco(区间dp)的更多相关文章

  1. USACO2004 Open提交作业(区间DP)

    Description 贝西在哞哞大学选修了C门课,她要把这些课的作业交给老师,然后去车站和同学们一 起回家.老师们在办公室里,办公室要等他们下课后才开,第i门课的办公室在Ti时刻后开放. 所有的办公 ...

  2. [BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)

    [BZOJ 1652][USACO 06FEB]Treats for the Cows Description FJ has purchased N (1 <= N <= 2000) yu ...

  3. 【BZOJ3379】【USACO2004】交作业 区间DP

    题目描述 数轴上有\(n\)个点,你要从位置\(0\)去位置\(B\),你每秒钟可以移动\(1\)单位.还有\(m\)个限制,每个限制\((x,y)\)表示你要在第\(t\)秒之后(可以是第\(t\) ...

  4. 【bzoj3379】[Usaco2004 Open]Turning in Homework 交作业 区间dp

    题目描述 数轴上有C个点,每个点有一个坐标和一个访问时间,必须在这个时间后到达这个点才算访问完成.可以在某个位置停留.每在数轴上走一个单位长度消耗一个单位的时间,问:访问所有点并最终到B花费的最小时间 ...

  5. USACO Training3.3 A Game【区间Dp】 By cellur925

    题目传送门 一股浓浓的博弈论香气...然而本蒟并不会博弈论. 开始用双端队列+假的dp水过了24pts水数据. 其实是布星的,两人都绝顶聪明会深谋远虑不像我只看眼前,所以上述算法错误. 正解:区间dp ...

  6. poj 3186 Treats for the Cows(区间dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  7. 第四届河南省ACM 节能 区间DP

    1001: 节 能 时间限制: 1 Sec  内存限制: 128 MB 提交: 21  解决: 9 [提交][状态][讨论版] 题目描述 Dr.Kong设计的机器人卡多越来越聪明.最近市政公司交给卡多 ...

  8. 浅谈区间DP的解题时常见思路

    一.区间DP解题时常见思路 如果题目中答案满足: 大的区间的答案可以由小的区间答案组合或加减得到 大的范围可以由小的范围代表 数据范围较小 我们这时可以考虑采用区间DP来解决. 那么常见的解法有两种: ...

  9. 山区建小学(区间DP)

    山区建小学 时间限制: 1 Sec  内存限制: 128 MB提交: 17  解决: 5[提交][状态][讨论版][命题人:quanxing] 题目描述 政府在某山区修建了一条道路,恰好穿越总共m个村 ...

随机推荐

  1. java的动态代理机制详解-----https://www.cnblogs.com/xiaoluo501395377/p/3383130.html

    java的动态代理机制详解-----https://www.cnblogs.com/xiaoluo501395377/p/3383130.html

  2. ORACLE数据库查看执行计划的方法

    一.什么是执行计划(explain plan) 执行计划:一条查询语句在ORACLE中的执行过程或访问路径的描述. 二.如何查看执行计划 1: 在PL/SQL下按F5查看执行计划.第三方工具toad等 ...

  3. Amoeba新版本MYSQL读写分离配置

    标签:mysql 数据库 读写分离 休闲 amoeba 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://skyson.blog.5 ...

  4. bzoj 4991 [Usaco2017 Feb]Why Did the Cow Cross the Road III(cdq分治,树状数组)

    题目描述 Farmer John is continuing to ponder the issue of cows crossing the road through his farm, intro ...

  5. Java高概率面试题目—finally

    在Java面试中关于finally的面试题目出现的概率非常高,而且一旦面试官问起绝不会是蜻蜓点水,而是会向你发起层层递进地“连环问”,并且回答这系列问题常常需要代码的辅助,可谓考验基础的面试利题.究竟 ...

  6. 原 linux添加虚拟ip(手动vip和keepalived方式)

    https://blog.csdn.net/dear_snowing/article/details/68066544 https://www.cnblogs.com/liuyisai/p/59906 ...

  7. LOAP& its implimenlation

    LDAP 概念 LDAP的英文全称是Lightweight Directory Access Protocol,简称为LDAP,LDAP是轻量目录访问协议,LDAP是轻量目录访问协议.简单的说来,LD ...

  8. mybatis collection标签和association标签(一对多,一对一)转载

    mybatis 一对一与一对多collection和association的使用   在mybatis如何进行一对一.一对多的多表查询呢?这里用一个简单的例子说明. 一.一对一 1.associati ...

  9. golang convert integer to float number

    There is no float type. Looks like you want float64. You could also use float32 if you only need a s ...

  10. NYOJ 298-点的变换(经典矩阵解决点平移、缩放、翻转和旋转)

    题目地址:NYOJ 298 思路:该题假设用对每一个点模拟的操作.时间复杂度为O(n+m),结果肯定超时.然而利用矩阵乘法能够在O(m)的时间内把全部的操作合并为一个矩阵,然后每一个点与该矩阵相乘能够 ...