P2339 提交作业usaco(区间dp)
P2339 提交作业usaco
题目背景
usaco
题目描述
贝西在哞哞大学选修了 C 门课,她要把所有作业分别交给每门课的老师,然后去车站和同学们一起回家。每个老师在各自的办公室里,办公室要等他们下课后才开,第 i 门课的办公室将在 Ti 分钟后开放。
所有的办公室都在一条笔直的走廊上,这条走廊长 H 个单位,一开始贝西在走廊的尽头一侧,位于坐标为 0 的地方。第 i 门课的办公室坐标位于坐标为 Xi 的地方,车站的坐标为 B。贝西可在走廊上自由行走,每分钟可以向右或者向左移动一个单位,也可以选择停着不移动。如果走到一间已经开门的办公室,贝西就可以把相应的作业交掉了,走进办公室交作业是不计时间的。请帮助贝西计算一下,从她开始交作业开始,直到到交完所有作业,再走到车站,最短需要多少时间时间。
输入输出格式
输入格式:
输入格式
• 第一行:三个整数 C, H 和 B, 1 ≤ C ≤ 1000 , 1 ≤ H ≤ 1000 , 0 ≤ B ≤ H
• 第二行到 C + 1 行:第 i + 1 行有两个整数 Xi 和 Ti, 0 ≤ Xi ≤ H , 0 ≤ Ti ≤ 10000
输出格式:
输出格式
• 单个整数,表示贝西交完作业后走到车站的最短时间
输入输出样例
说明
走到坐标 8 处,第 9 分钟交一本作业,等到第 12 分钟时,交另一本作业。再走到坐标 4 处交作业,最后走到坐标 3 处,交最后一本作业,此地就是车站所在位置,共用时 22 分钟
/*
直接想dp不好设状态,那就看看有什么性质......
容易想到把教室排序,如果一段区间[l,r]
先选外侧的教室交作业一定比先选里面的再出来再去另一边更优
那么答案就可以从外往里递推而来
再就是这种也可以向左也可以向右的题目一般来说都是转化为区间dp
f[l][r][0/1]表示决策到[l,r]这段区间,区间外的都已满足,选则l/r交作业的最短时间
转移看从那个教室移动过来即可。
*/
#include<bits/stdc++.h> #define N 1007 using namespace std;
int n,m,ans,cnt;
int f[N][N][];
struct node{
int Time,pos;
bool operator < (const node &a) const{
return pos<a.pos;
} }a[N]; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int main()
{
int C,H,B;
C=read();H=read();B=read();
for(int i=;i<=C;i++)
a[i].pos=read(),a[i].Time=read();
sort(a+,a+C+);
memset(f,/,sizeof f);
f[][C][]=max(a[].Time,a[].pos);
f[][C][]=max(a[C].Time,a[C].pos); for(int L=C-;L>=;L--) for(int i=;i+L<=C;++i)
{
int j=i+L;
f[i][j][]=min(max(f[i-][j][]+a[i].pos-a[i-].pos,a[i].Time),
max(f[i][j+][]+ a[j+].pos-a[i].pos,a[i].Time));
f[i][j][]=min(max(f[i-][j][]+a[j].pos - a[i-].pos,a[j].Time),
max(f[i][j+][]+ a[j+].pos-a[j].pos,a[j].Time));
}
ans=0x3f3f3f3f;
for (int i=;i<=C;i++)
ans=min(ans,f[i][i][]+abs(a[i].pos-B));
printf("%d\n",ans);
return ;
}
P2339 提交作业usaco(区间dp)的更多相关文章
- USACO2004 Open提交作业(区间DP)
Description 贝西在哞哞大学选修了C门课,她要把这些课的作业交给老师,然后去车站和同学们一 起回家.老师们在办公室里,办公室要等他们下课后才开,第i门课的办公室在Ti时刻后开放. 所有的办公 ...
- [BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)
[BZOJ 1652][USACO 06FEB]Treats for the Cows Description FJ has purchased N (1 <= N <= 2000) yu ...
- 【BZOJ3379】【USACO2004】交作业 区间DP
题目描述 数轴上有\(n\)个点,你要从位置\(0\)去位置\(B\),你每秒钟可以移动\(1\)单位.还有\(m\)个限制,每个限制\((x,y)\)表示你要在第\(t\)秒之后(可以是第\(t\) ...
- 【bzoj3379】[Usaco2004 Open]Turning in Homework 交作业 区间dp
题目描述 数轴上有C个点,每个点有一个坐标和一个访问时间,必须在这个时间后到达这个点才算访问完成.可以在某个位置停留.每在数轴上走一个单位长度消耗一个单位的时间,问:访问所有点并最终到B花费的最小时间 ...
- USACO Training3.3 A Game【区间Dp】 By cellur925
题目传送门 一股浓浓的博弈论香气...然而本蒟并不会博弈论. 开始用双端队列+假的dp水过了24pts水数据. 其实是布星的,两人都绝顶聪明会深谋远虑不像我只看眼前,所以上述算法错误. 正解:区间dp ...
- poj 3186 Treats for the Cows(区间dp)
Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...
- 第四届河南省ACM 节能 区间DP
1001: 节 能 时间限制: 1 Sec 内存限制: 128 MB 提交: 21 解决: 9 [提交][状态][讨论版] 题目描述 Dr.Kong设计的机器人卡多越来越聪明.最近市政公司交给卡多 ...
- 浅谈区间DP的解题时常见思路
一.区间DP解题时常见思路 如果题目中答案满足: 大的区间的答案可以由小的区间答案组合或加减得到 大的范围可以由小的范围代表 数据范围较小 我们这时可以考虑采用区间DP来解决. 那么常见的解法有两种: ...
- 山区建小学(区间DP)
山区建小学 时间限制: 1 Sec 内存限制: 128 MB提交: 17 解决: 5[提交][状态][讨论版][命题人:quanxing] 题目描述 政府在某山区修建了一条道路,恰好穿越总共m个村 ...
随机推荐
- 第五章、 Linux 常用網路指令
http://linux.vbird.org/linux_server/0140networkcommand.php 第五章. Linux 常用網路指令 切換解析度為 800x600 最近更新 ...
- WebLoad 脚本的用法
WebLoad 对于模拟一个HTTP 请求,一般都是 由以下三部分组成,并把这三部分包在一个Transaction里(从BeginTransation 到 EndTransaction 为止): ...
- hdu 3657 最小割(牛逼!!!!)总算理解了
<strong></strong> 转载:http://blog.csdn.net/me4546/article/details/6662959 加颜色的太棒了!!! 在网上看 ...
- 【ZJOI2017 Round1练习】D8T2 sequence(DP)
题意: 思路: #include <algorithm> #include <iostream> #include <cstring> #include <c ...
- Linux下汇编语言学习笔记27 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...
- Apache 使用localhost(127.0.0.1)可以访问,使用本机IP(局域网)不能访问
本机ip是:192.168.1.25,输入后提示: Forbidden You don't have permission to access / on this server 对于此问题的解决办法, ...
- c++ stl 使用汇总(string,vector,map,set)
1.string 1>substr(),截取字串的方法.返回一个从指定位置开始,并具有指定长度的子字符串.参数 start(必选),所需的子字符串的起始位置.字符串中第一个字符的索引为 0.le ...
- Java电商项目-6.实现门户首页数据展示_Redis数据缓存
目录 项目的Github地址 需求介绍 搭建Redis集群环境 下面先描述单机版redis的安装 下面将进行Redis3主3从集群环境搭建 基于SOA架构, 创建门户ashop-portal-web门 ...
- JDBC驱动类型
一下内容引用自http://wiki.jikexueyuan.com/project/jdbc/drive-types.html: 一.什么是JDBC驱动程序? JDBC驱动实现了JDBC API中定 ...
- STL中常用的c++语法
函数调用操作(c++语法中的左右小括号)可以被重载,STL的特殊版本都以仿函数形式呈现.如果对某个class进行operator()重载,它就成为一个仿函数. 仿函数(functor),就是使一个类的 ...