题目链接:https://vjudge.net/problem/POJ-2289

Jamie's Contact Groups
Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 8147   Accepted: 2736

Description

Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very long contact list in her cell phone. The contact list has become so long that it often takes a long time for her to browse through the whole list to find a friend's number. As Jamie's best friend and a programming genius, you suggest that she group the contact list and minimize the size of the largest group, so that it will be easier for her to search for a friend's number among the groups. Jamie takes your advice and gives you her entire contact list containing her friends' names, the number of groups she wishes to have and what groups every friend could belong to. Your task is to write a program that takes the list and organizes it into groups such that each friend appears in only one of those groups and the size of the largest group is minimized.

Input

There will be at most 20 test cases. Ease case starts with a line containing two integers N and M. where N is the length of the contact list and M is the number of groups. N lines then follow. Each line contains a friend's name and the groups the friend could belong to. You can assume N is no more than 1000 and M is no more than 500. The names will contain alphabet letters only and will be no longer than 15 characters. No two friends have the same name. The group label is an integer between 0 and M - 1. After the last test case, there is a single line `0 0' that terminates the input.

Output

For each test case, output a line containing a single integer, the size of the largest contact group.

Sample Input

3 2
John 0 1
Rose 1
Mary 1
5 4
ACM 1 2 3
ICPC 0 1
Asian 0 2 3
Regional 1 2
ShangHai 0 2
0 0

Sample Output

2
2

Source

题解:

题意:jamie的QQ有n个联系人,且设置了m个分组,规定了哪些朋友可以去哪些分组。为了能够快速地找到朋友,jamie希望人数最多的分组的人数最少(最大值最小),并且满足每个朋友仅存在于一个分组中。

1.二分最大值,即每个分组的容量。

2.利用二分图多重匹配,或者最大流,求出是否所有人都可以归到一个分组中。如果可以,则减小容量,否则增大容量。

多重匹配:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
const int INF = 2e9;
const int MOD = 1e9+;
const int MAXM = 5e2+;
const int MAXN = 1e3+; int uN, vN;
int num[MAXM], linker[MAXM][MAXN];
bool g[MAXN][MAXM], used[MAXM]; bool dfs(int u)
{
for(int v = ; v<vN; v++)
if(g[u][v] && !used[v])
{
used[v] = true;
if(linker[v][]<num[v])
{
linker[v][++linker[v][]] = u;
return true;
}
for(int i = ; i<=num[v]; i++)
if(dfs(linker[v][i]))
{
linker[v][i] = u;
return true;
}
}
return false;
} bool hungary(int mid)
{
for(int i = ; i<vN; i++)
{
num[i] = mid;
linker[i][] = ;
}
for(int u = ; u<uN; u++)
{
memset(used, false, sizeof(used));
if(!dfs(u)) return false;
}
return true;
} char tmp[];
int main()
{
while(scanf("%d%d", &uN, &vN) && (uN||vN))
{
memset(g, false, sizeof(g));
getchar();
for(int i = ; i<uN; i++)
{
gets(tmp);
int j = , len = strlen(tmp);
while(tmp[j]!=' ' && j<len) j++;
j++;
for(int v = ; j<=len; j++)
{
if(tmp[j]==' '||j==len)
{
g[i][v] = true;
v = ;
}
else v = v*+(tmp[j]-'');
}
} int l = , r = uN;
while(l<=r)
{
int mid = (l+r)>>;
if(hungary(mid))
r = mid - ;
else
l = mid + ;
}
printf("%d\n", l);
}
}

最大流:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
const int INF = 2e9;
const int MOD = 1e9+;
const int MAXM = 5e2+;
const int MAXN = 2e3+; struct Edge
{
int to, next, cap, flow;
}edge[MAXN*MAXN];
int tot, head[MAXN]; int uN, vN, maze[MAXN][MAXN];
int gap[MAXN], dep[MAXN], pre[MAXN], cur[MAXN]; void add(int u, int v, int w)
{
edge[tot].to = v; edge[tot].cap = w; edge[tot].flow = ;
edge[tot].next = head[u]; head[u] = tot++;
edge[tot].to = u; edge[tot].cap = ; edge[tot].flow = ;
edge[tot].next = head[v]; head[v] = tot++;
} int sap(int start, int end, int nodenum)
{
memset(dep, , sizeof(dep));
memset(gap, , sizeof(gap));
memcpy(cur, head, sizeof(head));
int u = pre[start] = start, maxflow = ,aug = INF;
gap[] = nodenum;
while(dep[start]<nodenum)
{
loop:
for(int i = cur[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap-edge[i].flow && dep[u]==dep[v]+)
{
aug = min(aug, edge[i].cap-edge[i].flow);
pre[v] = u;
cur[u] = i;
u = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u,u = pre[u])
{
edge[cur[u]].flow += aug;
edge[cur[u]^].flow -= aug;
}
aug = INF;
}
goto loop;
}
}
int mindis = nodenum;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap-edge[i].flow && mindis>dep[v])
{
cur[u] = i;
mindis = dep[v];
}
}
if((--gap[dep[u]])==)break;
gap[dep[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} bool test(int mid)
{
tot = ;
memset(head, -, sizeof(head));
for(int i = ; i<uN; i++)
{
add(uN+vN, i, );
for(int j = ; j<vN; j++)
if(maze[i][j])
add(i, uN+j, );
}
for(int i = ; i<vN; i++)
add(uN+i, uN+vN+, mid); int maxflow = sap(uN+vN, uN+vN+, uN+vN+);
return maxflow == uN;
} char tmp[];
int main()
{
while(scanf("%d%d", &uN, &vN) && (uN||vN))
{
memset(maze, , sizeof(maze));
getchar();
for(int i = ; i<uN; i++)
{
gets(tmp);
int j = , len = strlen(tmp);
while(tmp[j]!=' ' && j<len) j++;
j++;
for(int v = ; j<=len; j++)
{
if(tmp[j]==' '||j==len)
{
maze[i][v] = ;
v = ;
}
else v = v*+(tmp[j]-'');
}
} int l = , r = uN;
while(l<=r)
{
int mid = (l+r)>>;
if(test(mid))
r = mid - ;
else
l = mid + ;
}
printf("%d\n", l);
}
}

POJ2289 Jamie's Contact Groups —— 二分图多重匹配/最大流 + 二分的更多相关文章

  1. POJ 2289 Jamie's Contact Groups 二分图多重匹配 难度:1

    Jamie's Contact Groups Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 6511   Accepted: ...

  2. POJ 2289——Jamie's Contact Groups——————【多重匹配、二分枚举匹配次数】

    Jamie's Contact Groups Time Limit:7000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I ...

  3. POJ3189 Steady Cow Assignment —— 二分图多重匹配/最大流 + 二分

    题目链接:https://vjudge.net/problem/POJ-3189 Steady Cow Assignment Time Limit: 1000MS   Memory Limit: 65 ...

  4. POJ2112 Optimal Milking —— 二分图多重匹配/最大流 + 二分

    题目链接:https://vjudge.net/problem/POJ-2112 Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K T ...

  5. POJ 2289 Jamie's Contact Groups(多重匹配+二分)

    题意: Jamie有很多联系人,但是很不方便管理,他想把这些联系人分成组,已知这些联系人可以被分到哪个组中去,而且要求每个组的联系人上限最小,即有一整数k,使每个组的联系人数都不大于k,问这个k最小是 ...

  6. HDU 1669 Jamie's Contact Groups(多重匹配+二分枚举)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1669 题目大意: 给你各个人可以属于的组,把这些人分组,使这些组中人数最多的组人数最少,并输出这个人数 ...

  7. POJ2289 Jamie's Contact Groups(二分图多重匹配)

    Jamie's Contact Groups Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 7721   Accepted: ...

  8. hdu3605 Escape 二分图多重匹配/最大流

    2012 If this is the end of the world how to do? I do not know how. But now scientists have found tha ...

  9. Jamie's Contact Groups---hdu1669--poj2289(多重匹配+二分)

    题目链接 题意:Jamie有很多联系人,但是很不方便管理,他想把这些联系人分成组,已知这些联系人可以被分到哪个组中去,而且要求每个组的联系人上限最小,即有一整数k,使每个组的联系人数都不大于k,问这个 ...

随机推荐

  1. 【01】魔芋使用MDN的一点点经验

    [01]魔芋使用MDN的一点点经验     1,MDN地址: https://developer.mozilla.org/en-US/(下图)   2,建议看英文原文.因为中文翻译落后,并且有些翻译并 ...

  2. BNUOJ 2345 Muddy Fields

    Muddy Fields Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original I ...

  3. python去掉BOM头的方法

    今天在写批量生成身份证号造数据的时候出现了问题,其中一个是报不能转成int型,后经查找,发现是utf-8BOM头的问题. 什么是BOM? 在utf-8编码文件中BOM在文件头部,占用三个字节,用来标示 ...

  4. 间谍网络(tarjan缩点)

    洛谷传送门 看着这道题给人感觉就是tarjan求SCC,然而还得判断是否能控制全部间谍,这就得先从可以贿赂的点dfs一遍. 如果没有全部被标记了,就输出NO,再从没被标记的点里找最小的标号. 如果全被 ...

  5. 【BZOJ4517】排列计数(排列组合)

    题意:1-n的一个序列,其中有m个a[i]=i,求方案数 n,m<=1000000 题意:显然ANS=c(n,m)*d[n-m] d[i]为错排方案数=d[i-1]*n+(-1)^n ; ..] ...

  6. HDU1533 最小费用最大流

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. CodeForces 595A Vitaly and Night

    水题. #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> u ...

  8. 免费SSL申请

    https://letsencrypt.org/ https://letsencrypt.org/docs/client-options/ ACMESharp (.NET, PowerShell) w ...

  9. Codechef May Challenge 2015

    随便瞎写,其实没做出多少题: Chef and Cake 题目大概是用输入的数生成 一个数组并且生成出q个[X,Y]的询问, 数组长度N<=1000000,q<=10^7; 开始用线段树, ...

  10. loj517 计算几何瞎暴力(Trie树)

    题目: https://loj.ac/problem/517 分析: 操作4比较特殊,我们先来分析下操作4 操作4相当于需要一个数据结构,使得里面的数据有序(这有很多选择) 结合操作1,操作4的“排序 ...