Problem Description

Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days. 
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.

Input

On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.

Output

For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.

Sample Input

2
4 3
1 3 5
1 1 4
2 3 7
3 5 9
 
2 2
2 1 3
1 2 2

Sample Output

Case 1: Yes
 
Case 2: Yes
解题思路:此题关键在于建图,跑最大流来判断是否已达到满流。题意:有n个任务,m台机器。每个任务有最早才能开始做的时间s_i,截止时间e_i,和完成该任务所需要的时间p_i。每个任务可以分段进行,但在同一天一台机器最多只能执行一个任务,问是否有可行的工作时间来完成所有任务。做法:建立一个超级源点s=0和一个超级汇点t=1001。源点s和每个任务i建边,边权为p_i,表示完成该任务需要的天数。对于每一个任务i,将编号i与编号n+[s_i~e_i]中每个编号建边,边权为1,表示将任务i分在第n+s_i天~第n+e_i天来完成,再将编号n+[s_i~e_i]与汇点t建边,边权为m,表示每一天(编号为n+j)最多同时运行m台机器来完成8天的任务单位量。但由于建的边数太多,用裸的Dinic跑最大流会TLE,怎么优化呢?采用当前弧优化:因为每次dfs找增广路的过程中都是从每个顶点指向的第1(编号为0)条边开始遍历的,而如果第1条边已达到满流,则会继续遍历第2条边....直至找到汇点,事实上这个递归的过程就造成了很多不必要浪费的时间,所以在dfs的过程中应标记一下每个顶点v当前能到达的第curfir[v]条边,说明顶点v的第0条边~第curfir[v]-1条边都已达满流或者流不到汇点,这样时间复杂度就大大降低了。注意:每次bfs给图重新分层次时,需要清空当前弧数组cirfir[],表示初始时从每个顶点v的第1(编号为0)条边开始遍历。
AC代码(124ms):
 #include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=;
struct edge{ int to,cap;size_t rev;
edge(int _to, int _cap, size_t _rev):to(_to),cap(_cap),rev(_rev){}
};
int T,n,m,p,s,e,tot,level[maxn];queue<int> que;vector<edge> G[maxn];size_t curfir[maxn];//当前弧数组
void add_edge(int from,int to,int cap){
G[from].push_back(edge(to,cap,G[to].size()));
G[to].push_back(edge(from,,G[from].size()-));
}
bool bfs(int s,int t){
memset(level,-,sizeof(level));
while(!que.empty())que.pop();
level[s]=;
que.push(s);
while(!que.empty()){
int v=que.front();que.pop();
for(size_t i=;i<G[v].size();++i){
edge &e=G[v][i];
if(e.cap>&&level[e.to]<){
level[e.to]=level[v]+;
que.push(e.to);
}
}
}
return level[t]<?false:true;
}
int dfs(int v,int t,int f){
if(v==t)return f;
for(size_t &i=curfir[v];i<G[v].size();++i){//从v的第curfir[v]条边开始,采用引用的方法,同时改变本身的值
//因为节点v的第0~curfir[v]-1条边已达到满流了,所以无需重新遍历--->核心优化
edge &e=G[v][i];
if(e.cap>&&(level[v]+==level[e.to])){
int d=dfs(e.to,t,min(f,e.cap));
if(d>){
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}
return ;
}
int max_flow(int s,int t){
int f,flow=;
while(bfs(s,t)){
memset(curfir,,sizeof(curfir));//重新将图分层之后就清空数组,从第0条边开始遍历
while((f=dfs(s,t,INF))>)flow+=f;
}
return flow;
}
int main(){
while(~scanf("%d",&T)){
for(int cas=;cas<=T;++cas){
scanf("%d%d",&n,&m);tot=;
for(int i=;i<maxn;++i)G[i].clear();
for(int i=;i<=;++i)add_edge(+i,,m);
for(int i=;i<=n;++i){
scanf("%d%d%d",&p,&s,&e);
add_edge(,i,p);tot+=p;//tot为总时间
for(int j=s;j<=e;++j)add_edge(i,+j,);
}
printf("Case %d: %s\n\n",cas,max_flow(,)==tot?"Yes":"No");
}
}
return ;
}

解题报告:hdu 3572 Task Schedule(当前弧优化Dinic算法)的更多相关文章

  1. hdu 3572 Task Schedule (dinic算法)

    pid=3572">Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. HDU 3572 Task Schedule(拆点+最大流dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  3. hdu 3572 Task Schedule 网络流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3572 Our geometry princess XMM has stoped her study i ...

  4. HDU 3572 Task Schedule (最大流)

    C - Task Schedule Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. hdu 3572 Task Schedule

    Task Schedule 题意:有N个任务,M台机器.每一个任务给S,P,E分别表示该任务的(最早开始)开始时间,持续时间和(最晚)结束时间:问每一个任务是否能在预定的时间区间内完成: 注:每一个任 ...

  6. hdu 3572 Task Schedule (Dinic模板)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

  7. hdu 3572 Task Schedule(最大流&amp;&amp;建图经典&amp;&amp;dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  8. HDU 3572 Task Schedule(ISAP模板&amp;&amp;最大流问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=3572 题意:m台机器.须要做n个任务. 第i个任务.你须要使用机器Pi天,且这个任务要在[Si  , ...

  9. 图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

随机推荐

  1. XML-RPC JSON-RPC RPC是实现思路

    XML-RPC - Wikipedia https://en.wikipedia.org/wiki/XML-RPC JSON-RPC - Wikipedia https://en.wikipedia. ...

  2. bash_action

    https://stackoverflow.com/questions/12076326/how-to-install-maven2-on-redhat-linux #!/bin/bash # Tar ...

  3. 验证外部系统是否成功调用SAP RFC的方法有几种?

  4. C++11 条件变量

    C++11中的条件变量提供了用户等待的同步机制,在同步队列的应用中有很大的便利. 简单同步队列代码如下(SimpleSyncQueue.h): #ifndef SIMPLESYNCQUEUE_H #d ...

  5. 使用std::mutex取代QMutex

    为了保证对某个资源的操作是原子性的(对资源读写时,只有当前的操作结束,才允许另外线程对其操作,这里有个理解误区,资源操作原子性不是说,当前某个线程获得了某个资源使用权,然后线程执行时间完毕,要切换线程 ...

  6. Visio 2010 绘制流程图布局技巧

    设置多个元件大小一致:https://zhidao.baidu.com/question/176608306.html 设置多个元件的对齐方式,水平等距.垂直等距等:http://jingyan.ba ...

  7. Linux时间子系统之三:时间的维护者:timekeeper【转】

    本文转载自:http://blog.csdn.net/droidphone/article/details/7989566 本系列文章的前两节讨论了用于计时的时钟源:clocksource,以及内核内 ...

  8. HDU2181 哈密顿绕行世界问题 —— DFS

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2181 哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others) ...

  9. MYSQL进阶学习笔记二:MySQL存储过程和局部变量!(视频序号:进阶_4-6)

    知识点三:MySQL存储过程和局部变量(4,5,6) 存储过程的创建:     创建存储过程的步骤: 首先选中数据库 改变分隔符,不让分号作为执行结束的标记.(通常情况下,改变分隔符命令 DELIMI ...

  10. Intel® Media SDK(一)

    A cross-platform API for developing media applications on Windows* Fast video playback, encode, proc ...