Scipy-数值计算库
Scipy在Numpy的基础上则加了众多的数学计算,科学计算以及工程计算中常用的模块,例如线性代数,常微分方程的数值求解,信号处理,图像处理,系数矩阵等。在本章中,将通过实例介绍Scipy中常用的的一些模块。为了方便读者理解,在示例程序中使用matplotlib,TVTK以及Mayavi等扩展绘制二维以及三维图表。
Scipy的special模块是一个非常完整的函数库,其中包含了基本数学函数,特殊数学函数以及Numpy中出现的所有函数。
伽马(gamma)函数γ时概率统计学中经常出现的一个函数,它计算公式如下:

显然这样计算起来特别的麻烦,幸运的是。scipy.special中有内置的gamma模块。
>>> import scipy.special as S
>>> S.gamma(4)
6.0
>>> S.gamma(0.5)
1.7724538509055159
>>> S.gamma(1+1j)
(0.4980156681183554-0.15494982830181081j)
>>> S.gamma(1000)
inf
Γ(z)函数时结成函数在实数和复数系上的扩展,他的增长速度特别的块,1000的阶乘就超过了双精度浮点数的表示范围,因此结果就是无穷大。为了计算更大的范围可以使用gammaln()计算ln(|Γ(x)|)的只,它使用特殊的算法,能够直接计算Γ函数的对数值,因此可以表示更大的范围。
Scipy的constants模块中包含了众多的物理常数:
>>> from scipy import constants as C
>>> C.c # 真空中的光速
299792458.0
>>> C.h #普朗克常数
6.62607004e-34
special模块中的某些函数并不是数学意义上的特殊函数,例如log1p(x)计算log(1+x)的值。这是由于浮点数的精度有限,无法很精确的表示非常接近1 的常数。例如无法用浮点数表示1+1e-20的值,因此
>>> import math
>>> math.log(a)
0.0
,然而当使用log1p的时候,则可以很精确的计算。实际上当x非常小的时候,log1p(x)约等于x,这可以通过对log(1+x)进行泰勒级数展开进行证明。在后续的章节我们会学习如何使用符号计算库SymPy进行泰勒级数展开。
这些特殊函数与NumPy中的一般函数一样,都是ufunc函数,支持数组的广播运算。例如elipj(u,m)计算雅克比矩阵,他有两个参数u和m,返回四个值sn = sinΦ,cn = cosΦ,dn = (1-msin2Θ)-1/2 由于ellipj()支持广播运算。因此下面的程序在调用他时传递的两个参数的形状分别为(200,1)和(1,5),于是得到的四个结果数组的形状都是(200,5),图3-1显示了这些曲线。
Scipy的optimize模块提供了许多数值优化算法,本节对其中的非线性方程组求解,数据拟合,函数值等进行简单介绍
非线性方程组求解
fsolve()可以对非线性方程组进行求解,他的基本调用格式为fsolve(func,x0).其中func是计算方程组误差的函数,他的参数x是一个数组,其值为方程组的一组可能的解func返回将x带入方程组之后得到的每个方程的误差x0为未知数的一组初始值,假设要对下面的方程组进行求解:
f1(u1,u2,u3) = 0,f2(u1,u2,u3) = 0,f3(u1,u2,u3) = 0
那么finc函数可以定义为:
from math import sin,cos
from scipy import optimize def f(x):
x0,x1,x2 = x.tolist() return [5*x1+3,4*x0*x0-2*sin(x1*x2),x1*x2-1.5] result = optimize.fsolve(f,[1,1,1])
print(result)
print(f(result))
[-0.70622057 -0.6 -2.5 ]
[0.0, -9.126033262418787e-14, 5.329070518200751e-15]
f()时计算方程组的误差的函数,x参数是一组可能的解,fsolve()在调用f()时,传递给f()的参数是一个数组,先调用tolist,将其转化为标准浮点数列表,然后调用math函数中的模块进行计算。因为在进行单个数值的运算的时候,标准浮点类型比NumPy的浮点类型要快许多,所以把数值转化成标准浮点数类型,能缩短一些计算时间。调用fsolve()时,传递计算误差的函数f()以及未知数的初始值。
在对方程组进行求解的时候,fsolve()会自动计算方程组在某点对各个未知数变量的偏导数,这些偏导数组成一个二维数组,数学上称之为雅克比矩阵。如果方程组的未知数很多,而与每个方程有关联的未知数较少,即雅克比矩阵比较稀疏的时候,将计算雅克比矩阵的函数作为参数传递给fsolve(),这样可以大幅度提高运算速度,逼着在一个模拟计算的程序中需要求解有50个未知数的非线性方程组每个方程平均与6个未知数相关,通过传递计算雅克比矩阵的函数时fsolve()的计算速度提高了4 倍。
最小二乘拟合
假设有一组实验数据(xi,yj),我们实现知道他们应该满足某种函数关系yi = f(xi)。通过这些已知信息,需要确定函数f(x)的一些参数。例如函数f()时线性函数f(x) = kx+b那么参数k和b就是需要确定的值。如果用p表示函数中需要确定的参数,则目标是找到一组p使得函数S的值最小。
如果用p表示函数中需要确定的参数,则目标时找到一组p使得函数S的值最小:
这种方法叫做最小二乘拟合。在optimize模块中,可以受用leastsq()对数据进行最小二乘拟合运算。leastsq()的用法非常的简单。只需要将计算误差的函数和待确定参数的初始值传递给它即可。
import numpy as np
from scipy import optimize x = np.array([8.19 , 2.72 , 6.39 , 8.71 , 4.7 , 2.66 , 3.78])
y = np.array([7.01 , 2.78 , 6.47 , 6.71 , 4.1 , 4.23 , 4.05]) def residuals(p):
k,b = p
return y - (k*x + b) r = optimize.leastsq(residuals,[1,0]) k,b = r[0]
print("k = ",k,"b = ",b)
接下来看一个对正弦波进行拟合的例子。
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
#import pylab as pl
def func(x,p):
"""
数据拟合用的函数
"""
A , k , theta = p
return A*np.sin(2*np.pi*k*x+theta) #对 周期,相位,峰值都有参数可以调
def residuals(p,y,x):
"""
实验数据x,y和拟合数据之间的差,p为拟合需要找到的系数
"""
return y - func(x,p) x = np.linspace(0,2*np.pi,100)
A , k , theta = 10 , 0.34 , np.pi/6 # 真实数据的函数参数
y0 = func(x,[A , k , theta]) # 真实数据 广播运算
np.random.seed(0)
y1 = y0 + 2 * np.random.randn(len(x)) p0 = [7 , 0.4 , 0] # 第一次猜测的函数拟合参数
plsq = optimize.leastsq(residuals , p0 , args = (y1,x))
print("真实参数",[A,k,theta])
print("拟合参数",plsq[0])#实验数据 拟合之后的参数 plt.plot(x , y1 , "o" , label = u"Noisy data")
plt.plot(x , y0 , label = u'Real data' )
plt.plot(x,func(x,plsq[0]),label = u'Fitting data')
plt.legend(loc = 'best')
plt.show()
真实参数 [10, 0.34, 0.5235987755982988]
拟合参数 [ 10.25218748 0.3423992 0.50817425]
和上一个不同的是,这里的leatsq有一个args参数。因为residuals函数 有三个参数,所以这里调用的时候也需要将这三个参数传入,当然也可以改变一下采用上面没有args的写法。
Scipy-数值计算库的更多相关文章
- C#环境下的数值计算库:MathNet
下面用一个简单的例子来说明MathNet的使用方法: 1. 进入MathNet官网找到数值计算库Math.NET Iridium(Numerics)并下载: 2. 将下载的文件解压缩,在目录下的Bin ...
- windows下解决numpy, scipy等库安装失败的方法
如果pip安装scipy库失败,可以参考以下方法: scipy官方上提供了这样的方法: Windows packages Windows does not have any package manag ...
- python 数值计算库
pip install numpy pip install matplotlib pip install sklearn yum -y install tkinter pip install scip ...
- python开发应用笔记-SciPy扩展库使用
SciPy https://www.scipy.org/ SciPy中的数据结构: 1.ndarray(n维数组) 2.Series(变长字典) 3.DataFrame(数据框) NumPy适合于线性 ...
- Python 数值计算库之-[Pandas](六)
- Python 数值计算库之-[NumPy](五)
- c++ 数值计算库Eigen
http://eigen.tuxfamily.org/index.php?title=Main_Page
- Python_科学计算平台__pypi体系的numpy、scipy、pandas、matplotlib库简介
1.numpy--基础,以矩阵为基础的数学计算模块,纯数学 存储和处理大型矩阵. 这个是很基础的扩展,其余的扩展都是以此为基础. 快速学习入口 https://docs.scipy.org/doc/n ...
- Python3科学计算库概况
Python3科学计算常见库入门 Numpy快速数据处理库 参见我的博客 http://www.cnblogs.com/brightyuxl/p/8981294.html http://www.cnb ...
- Python之路-numpy模块
这里是首先需要安装好Anaconda Anaconda的安装参考Python之路-初识python及环境搭建并测试 配置好环境之后开始使用Jupyter Notebook 1.打开cmd,输入 jup ...
随机推荐
- 基于HTML5 Canvas和jQuery 的绘图工具的实现
简单介绍 HTML5 提供了强大的Canvas元素.使用Canvas并结合Javascript 能够实现一些很强大的功能.本文就介绍一下基于HTML5 Canvas 的绘图工具的实现.废话少说,先看成 ...
- LiberOJ#6178. 「美团 CodeM 初赛 Round B」景区路线规划 概率DP
题意 游乐园被描述成一张 n 个点,m 条边的无向图(无重边,无自环).每个点代表一个娱乐项目,第 i 个娱乐项目需要耗费 ci 分钟的时间,会让小 y 和妹子的开心度分别增加 h1i ,h2i ,他 ...
- android 中的常用组件
gradle gradle 是个啥,一开始我也没弄清,官方解释是: Gradle是一个基于Apache Ant和Apache Maven概念的项目自动化建构工具 那么Apache Ant和Apache ...
- oracle性能监控
https://blog.csdn.net/yangshangwei/article/details/52449489#监控事例的等待 https://blog.csdn.net/yangshangw ...
- jconsole工具检测堆内存变化的使用
jconsole将Java写的程序检测. 从Java 5开始 引入了 JConsole.JConsole 是一个内置 Java 性能分析器,可以从命令行或在 GUI shell 中运行.您可以轻松地使 ...
- vue开发:移动端图片上传
因为最近遇到个移动端上传头像的需求,上传到后台的数据是base64位,其中为了提高用户体验,把比较大的图片用canvas进行压缩之后再进行上传.在移动端调用拍照功能时,会发生图片旋转,为了解决这个问题 ...
- kafka 查询 SQL Query
. SELECT COUNT(*) FROM wiseweb_crawler_foreignmedias WHERE site_id= AND (gathertime BETWEEN '2017-05 ...
- html5--6-52 动画效果-过渡
html5--6-52 动画效果-过渡 实例 @charset="UTF-8"; div{ width: 300px; height: 150px; margin: 30px; f ...
- JS DOM1核心概要1
节点:XML和HTML文档都是有节点构成的结构,每段标记都可以通过节点来表示: 节点类型: 元素节点(常用) 属性节点(常用) 文本节点 注释节点 文档节点 进程节点 文档类型节点 等... 了解节点 ...
- FileInputStream和FileReader
这两个类都可以读入数据到缓冲区,FileInputStream在传递到buffer的时候要用byte定义buffer,不然报错.比如: byte [] buffer = new byte[100]; ...