Problem Description:

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

Input:

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

Output:

对输入的每组数据M和N,用一行输出相应的K。

Sample Input:

2
8 6
7 3

Sample Output:

20
8
解题思路:
设f(m,n) 为m个苹果,n个盘子的放法数目,则先对n作讨论:
①当m<n:必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m);  
②当m>=n:不同的放法可以分成两类:含0的方案数,不含0的方案数:
1、含0的方案数,至少有一个盘子空着,即相当于f(m,n) = f(m,n-1);
2、不含0的方案数,所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n);
而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)。
递归出口条件说明:
当n==1时,所有苹果都必须放在一个盘子里,所以返回1;
当没有苹果可放(m==0)时,定义为1种放法;
递归的两条路,第一条n会逐渐减少,终会到达出口n==1;
第二条m会逐渐减少,因为n>m时,会return f(m,m),所以终会到达出口m==0.
为什么出口m==0呢?因为我们总是让m>=n来求解的,所以m-n>=0,让m=0时候结束。如果改为m=1,则可能出现m-n=0的情况(与条件不符)从而不能得到正确解。 
AC代码一(递归写法):
 #include<bits/stdc++.h>
using namespace std;
int fun(int m,int n){
if(m== || n==)return ;
if(m<n)return fun(m,m);
else return fun(m,n-)+fun(m-n,n);
}
int main(){
int t,m,n;
cin>>t;
while(t--){
cin>>m>>n;
cout<<fun(m,n)<<endl;
}
return ;
}
 AC代码二(dp写法):
 #include<bits/stdc++.h>
using namespace std;
int main(){
int t,m,n,dp[][];
cin>>t;
while(t--){
cin>>m>>n;//初始化,盘子有0个时,无论有多少个苹果,情况数都为0
for(int i=;i<=m;++i){dp[i][]=;dp[i][]=;}//盘子有1个时,苹果0个时定义为1种情况,其余也都是1种情况
for(int i=;i<=n;++i)dp[][i]=;//苹果0个时,定义为1种情况
for(int i=;i<=m;++i){
for(int j=;j<=n;++j){
if(i<j)dp[i][j]=dp[i][i];
else dp[i][j]=dp[i][j-]+dp[i-j][j];
}
}
cout<<dp[m][n]<<endl;
}
return ;
}

 

ACM_递推题目系列之三放苹果(递推dp)的更多相关文章

  1. POJ1664:放苹果(线性dp)

    题目: http://poj.org/problem?id=1664 Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1 ...

  2. OpenJudge 666:放苹果 // 瞎基本DP

    666:放苹果 总时间限制:  1000ms     内存限制:  65536kB 描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1 ...

  3. 666:放苹果(划分dp)

    666:放苹果 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示 ...

  4. ACM_递推题目系列之一涂色问题(递推dp)

    递推题目系列之一涂色问题 Time Limit: 2000/1000ms (Java/Others) Problem Description: 有排成一行的n个方格,用红(Red).粉(Pink).绿 ...

  5. ACM_递推题目系列之二认错人(递推dp)

    递推题目系列之二认错人 Time Limit: 2000/1000ms (Java/Others) Problem Description: 国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼 ...

  6. POJ 1664 放苹果 (递推)

    题目链接:http://poj.org/problem?id=1664 dp[i][j]表示i个盘放j个苹果的方案数,dp[i][j] 可以由 dp[i - 1][j] 和 dp[i][j - i] ...

  7. 九度oj 题目1160:放苹果

    题目描述: 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. 输入: 第一行是测试数据的数目t(0 <= t ...

  8. 刷题向》DP》放苹果 (normal)

    这篇博客可能字数比较多,而且很难讲清楚,我会努力给你们讲清楚: 首先,放苹果是一道DP,之所以难,是因为很难想到,我的确有同学用三维数组做出来,然而三维的的确比二维好理解,但三维复杂度太高,虽然DP一 ...

  9. POJ 1664 放苹果 (递推思想)

    原题链接:http://poj.org/problem?id=1664 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n ...

随机推荐

  1. 2k进制数(codevs 1157)

    题目描述 Description 设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为 ...

  2. ZOJ - 3829 Known Notation(模拟+贪心)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3829 给定一个字符串(只包含数字和星号)可以在字符串的任意位置添加一个数字 ...

  3. JavaScript高级篇之Function对象

    JavaScript高级篇之Function对象 一: Function对象引入: Function对象是js的方法对象,可以用Function实例化出任何js方法对象. 例如: <%@ pag ...

  4. hibernate_Criteria_分页_去重

    触发原因:实体类间存在一对多关系,并且在一这方加载多的时候用的加载模式是eager. 解决方法:1.非分页:criteria.setResultTransformer(Criteria.DISTINC ...

  5. python 时间四舍五入

    假设时间格式为 YYYYMMDDhhmm , 比如201508010001 代表2015年8月1日0点01分. 现在有需求,要求一个start 和一个 end 变量的字符串 都是这种格式的时间. 需要 ...

  6. Django学习系列之Cookie、Session

    Cookie和Session介绍 cookie 保存在客户端 session 保存在服务端 session依赖于cookie,比如服务端想往客户端写东西的时候就把cookie写到客户端浏览器 djan ...

  7. nodejs连接sqlserver

    nodejs连接sqlserver http://blog.csdn.net/kkkkkxiaofei/article/details/31353091

  8. HDU 2870 Largest Submatrix (单调栈)

    http://acm.hdu.edu.cn/showproblem.php? pid=2870 Largest Submatrix Time Limit: 2000/1000 MS (Java/Oth ...

  9. 基于Office 365 无代码工作流分析-数据源的建立!

     标准操作步骤 下面整个步骤我们是以嘉昊信息的招聘过程的整个流程为一个场景,整个的流程场景的步骤例如以下: 整个的过程,我们通过Infopath 进行对应的表单流转,然后利用Sharepoint ...

  10. OpenLayers 3+Geoserver+PostGIS实现点击查询

    WebGIS开发中,点击查询是最经常使用的一种查询方式,在ArcGIS api 中.这样的查询叫IdentifyTask,主要作用是前台提交參数.交ArcServer查询分析返回. 本文从开源框架的角 ...