Numpy线性计算
Numpy内置方法以及numpy.linalg模块可实现矩阵乘法、矩阵分解、矩阵行列式等线性代数的计算。
In [1]: import numpy as np
In [2]: x = np.arange(6,dtype='float').reshape(2,3)
In [3]: x
Out[3]:
array([[0., 1., 2.],
[3., 4., 5.]])
In [4]: y = np.arange(6,dtype='int').reshape(3,2)
In [5]: y
Out[5]:
array([[0, 1],
[2, 3],
[4, 5]])
#x.dot(y)和np.dot(x,y)一样可以实现矩阵点乘
In [6]: x.dot(y)
Out[6]:
array([[10., 13.],
[28., 40.]])
In [7]: np.dot(x,y)
Out[7]:
array([[10., 13.],
[28., 40.]])
In [8]: np.dot(x,np.ones(3))
Out[8]: array([ 3., 12.])
In [10]: np.dot(x,np.ones(3).reshape(3,1))
Out[10]:
array([[ 3.],
[12.]])
In [11]: from numpy.linalg import inv, qr
In [12]: x = np.random.randn(5,5)
In [13]: mat = x.T.dot(x)
#inv(arr)实现逆矩阵求解
In [14]: inv(mat)
Out[14]:
array([[ 1.84895223, 0.52000274, -1.6102196 , 0.50430018, 0.85699129],
[ 0.52000274, 0.79958507, -0.6711184 , 0.20499197, 0.5296455 ],
[-1.6102196 , -0.6711184 , 1.94704649, -0.14636372, -1.09774765],
[ 0.50430018, 0.20499197, -0.14636372, 0.9424341 , -0.2083091 ],
[ 0.85699129, 0.5296455 , -1.09774765, -0.2083091 , 1.05277181]])
#矩阵乘以逆矩阵得到单位矩阵
In [15]: mat.dot(inv(mat))
Out[15]:
array([[ 1.00000000e+00, -5.71287376e-16, -4.78160183e-16,
1.36711210e-16, -8.70752759e-17],
[ 1.59513968e-17, 1.00000000e+00, -1.78338097e-17,
-1.27809360e-16, 2.59687796e-16],
[-8.31909138e-16, -1.44352653e-16, 1.00000000e+00,
-8.62450849e-17, 6.01921269e-16],
[-7.90282618e-16, 2.53674571e-16, 6.26183310e-16,
1.00000000e+00, -2.40653733e-16],
[ 4.87373871e-16, -1.53371320e-16, -1.03317523e-15,
1.98732722e-16, 1.00000000e+00]])
#qr(arr)实现矩阵因式分解,r为上三角矩阵,q为标准正交矩阵
In [16]: q,r = qr(mat)
In [17]: r
Out[17]:
array([[-4.77016813, -2.7746349 , -3.21063899, 3.73904397, 2.92899001],
[ 0. , -2.55332826, 1.1479357 , 1.56574687, 3.17486777],
[ 0. , 0. , -2.09076931, -1.2290909 , -2.99498757],
[ 0. , 0. , 0. , -0.90346691, 0.07658242],
[ 0. , 0. , 0. , 0. , 0.54459499]])
In [18]: q
Out[18]:
array([[-0.69707745, 0.33427417, 0.18008871, -0.38998806, 0.46671316],
[-0.22653787, -0.80948395, -0.43508171, -0.14464193, 0.28844228],
[-0.47068893, 0.23429759, -0.60319018, 0.04816661, -0.59782786],
[ 0.4092138 , 0.12283144, -0.22844122, -0.86741083, -0.11344409],
[ 0.27158721, 0.40374942, -0.60187057, 0.26882419, 0.57333425]])
#标准正交矩阵乘以其逆矩阵等于单位矩阵
In [19]: q.dot(inv(q))
Out[19]:
array([[ 1.00000000e+00, 8.91951189e-18, 6.81387594e-18,
1.10666298e-17, 1.97034778e-17],
[ 1.51199514e-17, 1.00000000e+00, -1.18531754e-17,
-2.02130063e-17, -2.07169311e-17],
[-1.55111623e-17, 8.77051635e-17, 1.00000000e+00,
6.24561853e-18, 1.54457642e-16],
[ 1.18675764e-16, 5.73913447e-17, -2.96557631e-17,
1.00000000e+00, -1.40072379e-17],
[ 3.59970210e-17, 8.66286674e-17, 2.17131897e-17,
-3.14254018e-17, 1.00000000e+00]])
#求解AX = B 方程,A为方阵
In [20]: A = [[1,1,1],[0,2,5],[2,5,-1]]
In [21]: B = [6,-4,27]
In [22]: np.linalg.solve(A,B)
Out[22]: array([ 5., 3., -2.])
numpy.linalg模块常用线性函数方法
官网内容:Linear algebra (numpy.linalg) — NumPy v1.21 Manual
| 函数方法 | 定义 |
|---|---|
| diag | 以一维数组的形式返回方阵对角线(或非对角线)元素,或将一维数组转换成方阵(非对角线元素为0) |
| dot | 矩阵乘法 |
| trace | 计算对角线元素的和 |
| det | 计算矩阵行列式 |
| eig | 计算方阵的特征值和特征向量 |
| inv | 计算方阵的逆方阵 |
| pinv | 计算矩阵的Moore-Penrose伪逆 |
| qr | 计算QR分解(因式分解),r为上三角矩阵,q为标准正交矩阵 |
| svd | 计算奇异值分解(SVD) |
| solve | 解线性方程组:Ax = b,其中 A为一个方阵 |
| lstsq | 计算Ax = b的最小乘解 |
Numpy线性计算的更多相关文章
- python安装numpy科学计算模块
解决两个问题: (1)Import Error: No module named numpy (2)Python version 2.7 required, which was not found i ...
- Numpy科学计算
NumPy介绍 NumPy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组. NumPy支持常见的数组和矩阵操作.对于同样的数值计算任务,使用Nu ...
- Numpy科学计算工具
Numpy初探 Numpy基础数据结构 Numpy数组是一个多维数组,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的原数据 导入该库: import numpy as np 多维数组 ...
- Numpy科学计算从放弃到入门
目录 一.什么是Numpy ndarray对象 相关文档 二.如何创建数组 三.如何访问数组 下标索引 切片索引 布尔型索引 整数索引 方形索引 四.如何做算数运算 五.如何使用统计函数 六.数组转置 ...
- numpy科学计算库的基础用法,完美抽象多维数组(原创)
#起别名避免重名 import numpy as np #小技巧:print从外往内看==shape从左往右看 if __name__ == "__main__": print(' ...
- python numpy 科学计算通用函数汇总
import numpy as np #一元函数 #绝对值计算 a = -1b = abs(a)print(b)输出: 1 #开平方计算 a = 4b = np.sqrt(a)print(b)输出: ...
- Python的工具包[0] -> numpy科学计算 -> numpy 库及使用总结
NumPy 目录 关于 numpy numpy 库 numpy 基本操作 numpy 复制操作 numpy 计算 numpy 常用函数 1 关于numpy / About numpy NumPy系统是 ...
- NumPy(数组计算)
一.介绍 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. 1.主要功能 1)ndarray,一个多维数组结构,高效且节省空间2)无需循环对整组数据进行快速运算的数 ...
- Numpy数组计算
NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. NumPy的主要功能 ndarray,一个多维数组结构,高效且节省空间 无需循环对整组数据进行快速运算的数学函数 ...
- NumPy之计算两个矩阵的成对平方欧氏距离
问题描述 设 \({X_{m \times k}} = \left[ {\vec x_1^T;\vec x_2^T; \cdots ;\vec x_m^T} \right]\) (; 表示纵向连接) ...
随机推荐
- 在MATPool矩池云完成Pytorch训练MNIST数据集
本文为矩池云入门手册的补充:Pytorch训练MNIST数据集代码运行过程. 案例代码和对应数据集,以及在矩池云上的详细操作可以在矩池云入门手册中查看,本文基于矩池云入门手册,默认用户已经完成了机器租 ...
- 【Azure 环境】记录使用Notification Hub,安卓手机收不到Push通知时的错误,Error_Code 30602 or 30608
问题描述 使用Azure Notification Hub + Baidu 推送遇见的两次报错为: 1. {"request_id":2921358089,"error_ ...
- [MAUI] 混合开发概念
混合开发的概念是相对与原生开发来说的:App不直接运行原生程序,而是在原生程序中运行一个Web程序,原生程序中包含Web运行时,用于承载Web页面.暂且将原生应用称之为Web容器,Web容器应该能 ...
- Kubernetes-一文详解ServiceAccount与RBAC权限控制
一.ServiceAccount 1.ServiceAccount 介绍 首先Kubernetes中账户区分为:User Accounts(用户账户) 和 Service Accounts(服务账户) ...
- 重新定义 vscode 命令行工具 code命令 code $profile
vscode 默认命令行有问题 他那个每次都打开cli.js 目录名里面有空格 要 &开头后面跟双引号 所以从新定义后 变量是 $变量名 前面再加上& 就能调用那个exe了 后面再跟上 ...
- vue初学者入门教程
vue初学者入门教程 欢迎关注博主公众号「java大师」, 专注于分享Java领域干货文章, 关注回复「资源」, 免费领取全网最热的Java架构师学习PDF, 转载请注明出处 https://www. ...
- JavaFx 圆形头像实现
原文:JavaFx 圆形头像实现 - Stars-One的杂货小窝 本文基于TornadoFx框架进行编写,封装工具代码是kotlin版本 圆形头像框组件封装成了stars-one/common-co ...
- 【stars-one】JetBrains产品试用重置工具
原文[stars-one]JetBrains产品试用重置工具 | Stars-One的杂货小窝 一款可重置JetBrains全家桶产品的试用时间的小工具,与其全网去找激活码,还不如每个月自己手动重置试 ...
- 关于python的copy()与deepcopy()之间的区别
关于python的copy()与deepcopy()之间的区别 copy为浅复制,不会产生一个独立的对象单独存在,如list中套着list的情况,当改变子list中的一个或多个元素,copy的内容也会 ...
- Spring Boot 实现各种参数校验(附项目源码)
本文会详细介绍Spring Validation各种场景下的最佳实践及其实现原理,死磕到底! 项目源码:spring-validation 一.简单使用 Java API规范(JSR303)定义了Be ...