百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测部署简介与总览
百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测部署简介与总览
百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 Paddle Inference 模型推理(离线部署)
百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于 Paddle Serving快速使用(服务化部署)
1. 预测部署简介与总览
本章主要介绍PP-OCRv2系统的高性能推理方法、服务化部署方法以及端侧部署方法。通过本章的学习,您可以学习到:
- 根据不同的场景挑选合适的预测部署方法
- PP-OCRv2系列模型在不同场景下的推理方法
- Paddle Inference、Paddle Serving、Paddle Lite的推理部署开发方法
1.1 简介
在前面几个章节中,我们通过模型训练的方法,得到了训练好的模型,在使用它去预测的时候,我们首先需要定义好模型,然后加载训练好的模型,再将预处理之后的数据送进网络中进行预测、后处理,得到最终的结果。使用这种方法去进行预测,调试方便,但是预测效率比较低下。
针对上面的问题,对于训练得到的模型,一般有下面2种离线预测的方式。
- 基于训练引擎推理,也就是和训练使用同一套引擎,它调试方便,便于我们迅速定位问题,验证正确性。多为Python语言。
- 基于预测引擎推理,将训练得到的模型进行转换,去掉与推理无关的部分,使用这种方法可以加速预测。多为Python语言或C++。
二者具体的区别如下所示。
| 基于训练引擎推理 | 基于预测引擎推理 | |
|---|---|---|
| 特点 | 1. 和训练使用同一套引擎 2. 预测时需要定义网络模型 3. 不适合系统集成 |
1. 需要转换模型,去掉与推理无关的部分 2. 预测时无需定义网络模型 3. 适合系统集成 |
| 编程语言 | 多为Python | Python或者C++ |
| 预测步骤 | 1. Python端定义网络结构 2. 准备输入数据 3. 加载训练模型 4. 执行预测 |
1. 准备输入数据 2. 加载模型结构和模型参数 3.执行预测 |
在实际离线预测部署中,更推荐基于预测引擎进行推理。
从应用场景来看,飞桨针对不同应用场景,提供了下面一些推理部署方案。
飞桨的不同部署方案
具体地,PaddleOCR 针对不同应用场景,提供了三种预测部署方案。
- Inference的离线预测,这种方式主要应用在对预测响应的及时性要求不高,特别是需要大量图片预测的场景。像文档电子化、广告信息提取等。虽然不能及时响应预测请求,但是没有网络延时,计算效率比较高,数据安全性很高。
- Serving服务化部署,这种方式主要应用在对预测响应的及时性要求很高的场景,像商业化OCR的API接口、实时拍照翻译、拍题等场景。虽然这种方式能及时对预测需求及时响应,但是网络耗时开销比较大,GPU利用率往往不高,而且存在数据安全风险。
- Lite端侧部署,这种方式主要希望模型部署到手机、机器人等端侧设备上,主要考虑部署方便和数据安全性,像手机APP里面身份证识别、银行卡识别,工业应用场景的仪表监控识别等。这种方法,对OCR模型的大小比较敏感。虽然没有网络延时,数据安全性很高,但是由于算力限制,预测效率不高。
本章基于PP-OCRv2,介绍文本检测、识别以及系统串联预测推理与部署过程。
1.2 环境准备
体验本章节内容需要首先下载PaddleOCR代码,安装相关依赖,具体命令如下。
import os
os.chdir("/home/aistudio")
# 下载代码
!git clone https://gitee.com/paddlepaddle/PaddleOCR.git
os.chdir("/home/aistudio/PaddleOCR")
# 安装运行所需要的whl包
!pip install -U pip
!pip install -r requirements.txt
# VQA任务中需要用到该库
!pip install paddlenlp==2.2.1
# 导入一些库
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import os
百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测部署简介与总览的更多相关文章
- 树莓派4B安装 百度飞桨paddlelite 做视频检测 (一、环境安装)
前言: 当前准备重新在树莓派4B8G 上面搭载训练模型进行识别检测,训练采用了百度飞桨的PaddleX再也不用为训练部署环境各种报错发愁了,推荐大家使用. 关于在树莓派4B上面paddlelite的文 ...
- 提速1000倍,预测延迟少于1ms,百度飞桨发布基于ERNIE的语义理解开发套件
提速1000倍,预测延迟少于1ms,百度飞桨发布基于ERNIE的语义理解开发套件 11月5日,在『WAVE Summit+』2019 深度学习开发者秋季峰会上,百度对外发布基于 ERNIE 的语义理解 ...
- Ubuntu 百度飞桨和 CUDA 的安装
Ubuntu 百度飞桨 和 CUDA 的安装 1.简介 本文主要是 Ubuntu 百度飞桨 和 CUDA 的安装 系统:Ubuntu 20.04 百度飞桨:2.2 为例 2.百度飞桨安装 访问百度飞桨 ...
- 我做的百度飞桨PaddleOCR .NET调用库
我做的百度飞桨PaddleOCR .NET调用库 .NET Conf 2021中国我做了一次<.NET玩转计算机视觉OpenCV>的分享,其中提到了一个效果特别好的OCR识别引擎--百度飞 ...
- 百度飞桨数据处理 API 数据格式 HWC CHW 和 PIL 图像处理之间的关系
使用百度飞桨 API 例如:Resize Normalize,处理数据的时候. Resize:如果输入的图像是 PIL 读取的图像这个数据格式是 HWC ,Resize 就需要 HWC 格式的数据. ...
- javacpp-opencv图像处理系列:国内车辆牌照检测识别系统(万份测试车牌识别准确率99.7%以上,单次平均耗时39ms)
javaCV图像处理系列: 一.javaCV图像处理之1:实时视频添加文字水印并截取视频图像保存成图片,实现文字水印的字体.位置.大小.粗度.翻转.平滑等操作 二.javaCV图像处理之2:实时视频添 ...
- 基于深度学习的鸟类检测识别系统(含UI界面,Python代码)
摘要:鸟类识别是深度学习和机器视觉领域的一个热门应用,本文详细介绍基于YOLOv5的鸟类检测识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择各种鸟类图 ...
- 【百度飞桨】手写数字识别模型部署Paddle Inference
从完成一个简单的『手写数字识别任务』开始,快速了解飞桨框架 API 的使用方法. 模型开发 『手写数字识别』是深度学习里的 Hello World 任务,用于对 0 ~ 9 的十类数字进行分类,即输入 ...
- 【一】ERNIE:飞桨开源开发套件,入门学习,看看行业顶尖持续学习语义理解框架,如何取得世界多个实战的SOTA效果?
参考文章: 深度剖析知识增强语义表示模型--ERNIE_财神Childe的博客-CSDN博客_ernie模型 ERNIE_ERNIE开源开发套件_飞桨 https://github.com/Pad ...
- Faster-RCNN用于场景文字检测训练测试过程记录(转)
[训练测试过程记录]Faster-RCNN用于场景文字检测 原创 2017年11月06日 20:09:00 标签: 609 编辑 删除 写在前面:github上面的Text-Detection-wit ...
随机推荐
- Spring 事务——源码分析
[事务环境搭建工作]:链接注解 @EnableTransactionManagement:在配置类中添加注解@EnableTransactionManagement,便开启了事务功能.此注解也是了解S ...
- Kafka 之 HW 与 LEO
更多内容,前往 IT-BLOG HW(High Watermark):俗称高水位,它标识了一个特定的消息偏移量(offset),消费者只能拉取到这个 offset 之前的消息.分区 ISR 集合中的每 ...
- Flutter 异步编程指南
作者:京东物流 王志明 1 Dart 中的事件循环模型 在 App 开发中,经常会遇到处理异步任务的场景,如网络请求.读写文件等.Android.iOS 使用的是多线程,而在 Flutter 中为单线 ...
- JavaScript中计时器requestAnimationFrame、setTimeout、setInterval、setImmediate的使用和区别
在JavaScript中,我们经常使用requestAnimationFrame.setTimeout.setInterval和setImmediate来控制代码的执行时机.它们各有特点和适用场景: ...
- CentOS8安装Oracle datebase 19C
我这里安装Oracle数据库是rpm格式的包.需要先得有以下依赖包关系,先依次按此顺序安装. yum install ./compat-libcap1-1.10-7.el7.x86_64.rp ...
- [JavaScript]使页面内目标关键字高亮
1 源码 function keywordHighlighten(querySelector, key, bgColor){//文本关键字高亮 var doms = document.querySel ...
- [Spring MVC]@RequestMapping 与 @RequestMapping+@RequestResponse的区别
假定:返回格式均为JSON,JSON实体对象myJson的属性有:data.message.code.status. 二者的区别在于: @RequestMapping:会在最外层包裹 data属性,将 ...
- 四月二十六java基础知识
1..对文件的随机访问:前面介绍的流类实现的是磁盘文件的顺序读写,而且读和写分别创建不同的对象,java语言中还定义了一个功能强大.使用更方便的随机访问类RandomAcessFile它可以实现文件的 ...
- SMT贴片加工钢网工艺制作方法
smt贴片加工过程中,首先要进行锡膏印刷,而锡膏印刷的工作原理就是用机器刮刀将锡膏推送到钢网的孔洞中,使锡膏与pcb板的电子元器件接触,为下一步焊接做准备.钢网的作用就是与pcb板焊盘位置固定,使锡膏 ...
- 快速上手Linux核心命令(一):核心命令简介
前言 众所周知,Linux在服务器中占用不可替代的位置.大多数互联网公司,服务器都是采用的Linux操作系统.而Linux是一个主要通过命令行来进行管理的操作系统.只有熟练掌握Linux核心命令,在使 ...