百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测部署简介与总览

百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 Paddle Inference 模型推理(离线部署)

百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于 Paddle Serving快速使用(服务化部署)

1. 预测部署简介与总览

本章主要介绍PP-OCRv2系统的高性能推理方法、服务化部署方法以及端侧部署方法。通过本章的学习,您可以学习到:

  • 根据不同的场景挑选合适的预测部署方法
  • PP-OCRv2系列模型在不同场景下的推理方法
  • Paddle Inference、Paddle Serving、Paddle Lite的推理部署开发方法

1.1 简介

在前面几个章节中,我们通过模型训练的方法,得到了训练好的模型,在使用它去预测的时候,我们首先需要定义好模型,然后加载训练好的模型,再将预处理之后的数据送进网络中进行预测、后处理,得到最终的结果。使用这种方法去进行预测,调试方便,但是预测效率比较低下。

针对上面的问题,对于训练得到的模型,一般有下面2种离线预测的方式。

  1. 基于训练引擎推理,也就是和训练使用同一套引擎,它调试方便,便于我们迅速定位问题,验证正确性。多为Python语言。
  2. 基于预测引擎推理,将训练得到的模型进行转换,去掉与推理无关的部分,使用这种方法可以加速预测。多为Python语言或C++。

二者具体的区别如下所示。

基于训练引擎推理 基于预测引擎推理
特点 1. 和训练使用同一套引擎
2. 预测时需要定义网络模型
3. 不适合系统集成
1. 需要转换模型,去掉与推理无关的部分
2. 预测时无需定义网络模型
3. 适合系统集成
编程语言 多为Python Python或者C++
预测步骤 1. Python端定义网络结构
2. 准备输入数据
3. 加载训练模型
4. 执行预测
1. 准备输入数据
2. 加载模型结构和模型参数
3.执行预测

在实际离线预测部署中,更推荐基于预测引擎进行推理。

从应用场景来看,飞桨针对不同应用场景,提供了下面一些推理部署方案。

飞桨的不同部署方案

具体地,PaddleOCR 针对不同应用场景,提供了三种预测部署方案。

  • Inference的离线预测,这种方式主要应用在对预测响应的及时性要求不高,特别是需要大量图片预测的场景。像文档电子化、广告信息提取等。虽然不能及时响应预测请求,但是没有网络延时,计算效率比较高,数据安全性很高。
  • Serving服务化部署,这种方式主要应用在对预测响应的及时性要求很高的场景,像商业化OCR的API接口、实时拍照翻译、拍题等场景。虽然这种方式能及时对预测需求及时响应,但是网络耗时开销比较大,GPU利用率往往不高,而且存在数据安全风险。
  • Lite端侧部署,这种方式主要希望模型部署到手机、机器人等端侧设备上,主要考虑部署方便和数据安全性,像手机APP里面身份证识别、银行卡识别,工业应用场景的仪表监控识别等。这种方法,对OCR模型的大小比较敏感。虽然没有网络延时,数据安全性很高,但是由于算力限制,预测效率不高。

本章基于PP-OCRv2,介绍文本检测、识别以及系统串联预测推理与部署过程。

1.2 环境准备

体验本章节内容需要首先下载PaddleOCR代码,安装相关依赖,具体命令如下。

import os

os.chdir("/home/aistudio")
# 下载代码
!git clone https://gitee.com/paddlepaddle/PaddleOCR.git
os.chdir("/home/aistudio/PaddleOCR")
# 安装运行所需要的whl包
!pip install -U pip
!pip install -r requirements.txt
# VQA任务中需要用到该库
!pip install paddlenlp==2.2.1 # 导入一些库
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import os

百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测部署简介与总览的更多相关文章

  1. 树莓派4B安装 百度飞桨paddlelite 做视频检测 (一、环境安装)

    前言: 当前准备重新在树莓派4B8G 上面搭载训练模型进行识别检测,训练采用了百度飞桨的PaddleX再也不用为训练部署环境各种报错发愁了,推荐大家使用. 关于在树莓派4B上面paddlelite的文 ...

  2. 提速1000倍,预测延迟少于1ms,百度飞桨发布基于ERNIE的语义理解开发套件

    提速1000倍,预测延迟少于1ms,百度飞桨发布基于ERNIE的语义理解开发套件 11月5日,在『WAVE Summit+』2019 深度学习开发者秋季峰会上,百度对外发布基于 ERNIE 的语义理解 ...

  3. Ubuntu 百度飞桨和 CUDA 的安装

    Ubuntu 百度飞桨 和 CUDA 的安装 1.简介 本文主要是 Ubuntu 百度飞桨 和 CUDA 的安装 系统:Ubuntu 20.04 百度飞桨:2.2 为例 2.百度飞桨安装 访问百度飞桨 ...

  4. 我做的百度飞桨PaddleOCR .NET调用库

    我做的百度飞桨PaddleOCR .NET调用库 .NET Conf 2021中国我做了一次<.NET玩转计算机视觉OpenCV>的分享,其中提到了一个效果特别好的OCR识别引擎--百度飞 ...

  5. 百度飞桨数据处理 API 数据格式 HWC CHW 和 PIL 图像处理之间的关系

    使用百度飞桨 API 例如:Resize Normalize,处理数据的时候. Resize:如果输入的图像是 PIL 读取的图像这个数据格式是 HWC ,Resize 就需要 HWC 格式的数据. ...

  6. javacpp-opencv图像处理系列:国内车辆牌照检测识别系统(万份测试车牌识别准确率99.7%以上,单次平均耗时39ms)

    javaCV图像处理系列: 一.javaCV图像处理之1:实时视频添加文字水印并截取视频图像保存成图片,实现文字水印的字体.位置.大小.粗度.翻转.平滑等操作 二.javaCV图像处理之2:实时视频添 ...

  7. 基于深度学习的鸟类检测识别系统(含UI界面,Python代码)

    摘要:鸟类识别是深度学习和机器视觉领域的一个热门应用,本文详细介绍基于YOLOv5的鸟类检测识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择各种鸟类图 ...

  8. 【百度飞桨】手写数字识别模型部署Paddle Inference

    从完成一个简单的『手写数字识别任务』开始,快速了解飞桨框架 API 的使用方法. 模型开发 『手写数字识别』是深度学习里的 Hello World 任务,用于对 0 ~ 9 的十类数字进行分类,即输入 ...

  9. 【一】ERNIE:飞桨开源开发套件,入门学习,看看行业顶尖持续学习语义理解框架,如何取得世界多个实战的SOTA效果?

    ​ 参考文章: 深度剖析知识增强语义表示模型--ERNIE_财神Childe的博客-CSDN博客_ernie模型 ERNIE_ERNIE开源开发套件_飞桨 https://github.com/Pad ...

  10. Faster-RCNN用于场景文字检测训练测试过程记录(转)

    [训练测试过程记录]Faster-RCNN用于场景文字检测 原创 2017年11月06日 20:09:00 标签: 609 编辑 删除 写在前面:github上面的Text-Detection-wit ...

随机推荐

  1. while与do-while的区别是什么,怎么用?

    前言 在上一篇文章中,壹哥给大家讲解了循环的概念,并重点给大家讲解了for循环的使用.但在Java中,除了for循环之外,还有while.do-while.foreach等循环形式.今天壹哥就再用一篇 ...

  2. CSAPP-Attack Lab

    目录 Code Injection Attacks Level 1 Level 2 Level_3 Return-Oriented Programming Level_4 Level_5 获取栈顶地址 ...

  3. Thanos工作原理及组件简介

    Thanos 简介 Thanos 是一个「开源的,高可用的 Prometheus 系统,具有长期存储能力」.很多知名公司都在使用 Thanos,也是 CNCF 孵化项目的一部分. Thanos 的一个 ...

  4. 软件开发定律:海勒姆定律(Hyrum's Law)

    hi,我是熵减,见字如面. 在软件开发中,你是否遇到过这种情况: 你正在开发一个购物车的功能,需要在用户添加商品到购物车时,将商品的信息存储到数据库中.你设计了一个简单的方法,如下所示: public ...

  5. python入门教程之十五获取对象属性的几种方法

    当我们拿到一个对象的引用时,如何知道这个对象是什么类型.有哪些方法呢? 使用type() 首先,我们来判断对象类型,使用type()函数: 基本类型都可以用type()判断: >>> ...

  6. 【Mybatis Plus】

    引入依赖 <dependencies> <dependency> <groupId>org.springframework.boot</groupId> ...

  7. The first week match's mistake-2

    旋转排列 (https://www.luogu.com.cn/problem/B3688) 解读一下题目: 要求从给定的数组拿出最后一个数字后 看看变化后的数组的最后一个数字是否是要求的数字 想到用栈 ...

  8. 数组描述线性表(C++实现)

    线性表也称有序表,其每一个实例都是元素的一个有序集合 抽象类linearList 一个抽象类包含没有实现代码的成员函数,这样的成员函数称为纯虚函数,用数字0作为初始值来说明 template<c ...

  9. Elasticsearch搜索功能的实现(五)-- 实战

    实战环境 elastic search 8.5.0 + kibna 8.5.0 + springboot 3.0.2 + spring data elasticsearch 5.0.2 + jdk 1 ...

  10. Python变量的数据类型

    主要内容 jupyter notebook的用法 变量 跟vi/vim的编辑模式很像 # 声明的三种格式 # 格式1 s1 = "我爱王晓静" # 格式2 s2 = s1 = &q ...