NC51111 Atlantis
题目
题目描述
There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
输入描述
The input consists of several test cases. Each test case starts with a line containing a single integer n \((1 \leq n \leq 100)\) of available maps. The n following lines describe one map each. Each of these lines contains four numbers \(x_1;y_1;x_2;y_2\) \((0 \leq x_1 \lt x_2 \leq 100000;0 \leq y_1 \lt y_2 \leq 100000)\) , not necessarily integers. The values \((x_1; y_1)\) and \((x_2;y_2)\) are the coordinates of the top-left resp. bottom-right corner of the mapped area.
The input file is terminated by a line containing a single 0. Don't process it.
输出描述
For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.
Output a blank line after each test case.
示例1
输入
2
10 10 20 20
15 15 25 25.5
0
输出
Test case #1
Total explored area: 180.00
题解
知识点:扫描线,线段树,离散化。
线段树+扫面线处理面积并问题,是板子题。
更新时,通过到上次更新的距离与线段覆盖长度,来计算面积。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template<class T>
struct Discretization {
vector<T> uniq;
Discretization() {}
Discretization(const vector<T> &src) { init(src); }
void init(const vector<T> &src) {
uniq = src;
sort(uniq.begin() + 1, uniq.end());
uniq.erase(unique(uniq.begin() + 1, uniq.end()), uniq.end());
}
int get(T x) { return lower_bound(uniq.begin() + 1, uniq.end(), x) - uniq.begin(); }
};
template<class T>
class ScanlineA {
struct Segment {
int l, r;
int cover;
T len;
};
int n;
vector<T> dot;
vector<Segment> node;
void push_up(int rt) {
if (node[rt].cover) node[rt].len = dot[node[rt].r + 1] - dot[node[rt].l];
else if (node[rt].l == node[rt].r) node[rt].len = 0;
else node[rt].len = node[rt << 1].len + node[rt << 1 | 1].len;
}
void update(int rt, int l, int r, int x, int y, int cover) {
if (r < x || y < l) return;
if (x <= l && r <= y) return node[rt].cover += cover, push_up(rt);
int mid = l + r >> 1;
update(rt << 1, l, mid, x, y, cover);
update(rt << 1 | 1, mid + 1, r, x, y, cover);
push_up(rt);
}
public:
ScanlineA() {}
ScanlineA(const vector<T> &_dot) { init(_dot); }
void init(const vector<T> &_dot) {
assert(_dot.size() >= 2);
n = _dot.size() - 2;
dot = _dot;
node.assign(n << 2, { 0,0,0,0 });
function<void(int, int, int)> build = [&](int rt, int l, int r) {
node[rt] = { l,r,0,0 };
if (l == r) return;
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
};
build(1, 1, n);
}
void update(int x, int y, int cover) { update(1, 1, n, x, y, cover); }
Segment query() { return node[1]; }
};
/// 面积并扫描线特化线段树,O(logn),配合离散化可以处理任意精度覆盖长度并问题
/// 求面积并,O(nlogn),面积并 = sum(两次扫描的距离*覆盖长度并)
//* 其中n代表线段数,并非端点数,端点数应为n+1
//* 端点编号从1开始,线段编号也从1开始
//* 任何区间(如l,r或x,y)都代表线段编号而非端点编号,即表示dot[l]到dot[r + 1],使用时注意
template<class T>
struct pk {
T val;
friend bool operator<(const pk &a, const pk &b) {
if (abs(a.val - b.val) < 1e-6) return false;//! 浮点型注意相等条件
return a.val < b.val;
}
friend bool operator==(const pk &a, const pk &b) { return !(a < b) && !(b < a); }
};
//* 专门处理浮点型比较判断的封装类
template<class T>
struct edge {
T x;
pk<T> y1, y2;
int rky1, rky2;
int flag;
};
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
int cnt = 0;
cout << fixed << setprecision(2);
while (cnt++, cin >> n, n) {
if (cnt > 1) cout << '\n';
vector<edge<double>> e(2 * n + 1);
vector<pk<double>> y_src(2 * n + 1);
for (int i = 1;i <= n;i++) {
double x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
e[2 * i - 1] = { x1,{y1},{y2},0,0,1 };
e[2 * i] = { x2,{y1},{y2},0,0,-1 };
y_src[2 * i - 1] = { y1 };
y_src[2 * i] = { y2 };
}
Discretization<pk<double>> dc(y_src);
for (int i = 1;i <= n;i++) {
e[2 * i - 1].rky1 = dc.get({ e[2 * i - 1].y1 });
e[2 * i - 1].rky2 = dc.get({ e[2 * i - 1].y2 });
e[2 * i].rky1 = dc.get({ e[2 * i].y1 });
e[2 * i].rky2 = dc.get({ e[2 * i].y2 });
}
sort(e.begin() + 1, e.end(), [&](const auto &a, const auto &b) {return a.x < b.x;});
vector<double> dot(dc.uniq.size());
for (int i = 1;i < dot.size();i++) dot[i] = dc.uniq[i].val;
ScanlineA<double> sla(dot);
double ans = 0;
sla.update(e[1].rky1, e[1].rky2 - 1, e[1].flag);
for (int i = 2;i <= 2 * n;i++) {
ans += (e[i].x - e[i - 1].x) * sla.query().len;
sla.update(e[i].rky1, e[i].rky2 - 1, e[i].flag);
}
cout << "Test case #" << cnt << '\n';
cout << "Total explored area: " << ans << '\n';
}
return 0;
}
/*
2
10 10 20 20
15 15 25 25.5
2
10 10 20 20
15 15 25 25.5
0
Test case #1
Total explored area: 180.00
Test case #2
Total explored area: 180.00
*/
NC51111 Atlantis的更多相关文章
- [POJ1151]Atlantis
[POJ1151]Atlantis 试题描述 There are several ancient Greek texts that contain descriptions of the fabled ...
- 线段树---Atlantis
题目网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110064#problem/A Description There are se ...
- hdu 1542 Atlantis(线段树,扫描线)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- 【POJ】1151 Atlantis(线段树)
http://poj.org/problem?id=1151 经典矩形面积并吧.....很简单我就不说了... 有个很神的地方,我脑残没想到: 将线段变成点啊QAQ这样方便计算了啊 还有个很坑的地方, ...
- HDU 1542 Atlantis(线段树扫描线+离散化求面积的并)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- POJ 1542 Atlantis(线段树 面积 并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542 参考网址:http://blog.csdn.net/sunmenggmail/article/d ...
- [POJ 1151] Atlantis
一样的题:HDU 1542 Atlantis Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 18148 Accepted ...
- 【HDU 1542】Atlantis 矩形面积并(线段树,扫描法)
[题目] Atlantis Problem Description There are several ancient Greek texts that contain descriptions of ...
- 【POJ1151】【扫描线+线段树】Atlantis
Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...
- hdu 1542 Atlantis(段树&扫描线&面积和)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
随机推荐
- KVM 核心功能:CPU 虚拟化
1 vCPU 简介 CPU 负责计算机程序指令的执行.QEMU-KVM 提供对虚拟机 CPU 的模拟,对于虚拟机来说,其拥有的 CPU 是真实的, 和物理 CPU 没有区别. 实际上,虚拟机在 hos ...
- NewStarCTF 2023 公开赛道 WEEK3|CRYPTO WP
一.Rabin's RSA 题目信息 from Crypto.Util.number import * from secret import flag p = getPrime(64) q = get ...
- [转帖]MySQL运维实战(2)MySQL用户和权限管理
https://segmentfault.com/a/1190000044514403 作者:俊达 引言 MySQL数据库系统,拥有强大的控制系统功能,可以为不同用户分配特定的权限,这对于运维来说至关 ...
- [转帖]命令行参数--与-D的区别
https://juejin.cn/post/7238420276228341815 Spring Boot 学习笔记 我们要想了解这两者之间的差异,首先来看一个案例: bash 复制代码 # ...
- [转帖]备份与恢复工具 BR 简介
https://docs.pingcap.com/zh/tidb/v4.0/backup-and-restore-tool BR 全称为 Backup & Restore,是 TiDB 分布式 ...
- [转帖]zookeeper三节点集群搭建
https://www.jianshu.com/p/1dcfbf45383b 下载zookeeper Apache源 http://archive.apache.org/dist/zookeeper/ ...
- [转帖]Linux三剑客之sed的初阶使用
https://www.jianshu.com/p/ceea435635a2 大多数情况下,对于文件内容的修改需要依赖交互式的软件来实现,例如vim修改文件的内容则是依赖光标的移动和修改操作来完成对文 ...
- [转帖]Nginx 反向代理解决跨域问题
https://juejin.cn/post/6995374680114741279 编写代码两分钟,解决跨域两小时,我吐了. 如果对跨域还不了解的朋友,可以看这篇:[基础]HTTP.TCP/IP 协 ...
- [转帖]Linux Page cache和Buffer cache
https://www.cnblogs.com/hongdada/p/16926655.html free 命令常用参数 free 命令用来查看内存使用状况,常用参数如下: -h human-read ...
- [转帖]SPEC-cpu2006的详细使用一键安装、手动安装。
一.SPEC-cpu2006简介 SPEC CPU 2006 benchmark是SPEC新一代的行业标准化的CPU测试基准套件.重点测试系统的处理器,内存子系统和编译器. 说明:由于spec2006 ...