题目链接

题目

题目描述

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.

输入描述

The input consists of several test cases. Each test case starts with a line containing a single integer n \((1 \leq n \leq 100)\) of available maps. The n following lines describe one map each. Each of these lines contains four numbers \(x_1;y_1;x_2;y_2\) \((0 \leq x_1 \lt x_2 \leq 100000;0 \leq y_1 \lt y_2 \leq 100000)\) , not necessarily integers. The values \((x_1; y_1)\) and \((x_2;y_2)\) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don't process it.

输出描述

For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case.

示例1

输入

2
10 10 20 20
15 15 25 25.5
0

输出

Test case #1
Total explored area: 180.00

题解

知识点:扫描线,线段树,离散化。

线段树+扫面线处理面积并问题,是板子题。

更新时,通过到上次更新的距离与线段覆盖长度,来计算面积。

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; template<class T>
struct Discretization {
vector<T> uniq;
Discretization() {}
Discretization(const vector<T> &src) { init(src); }
void init(const vector<T> &src) {
uniq = src;
sort(uniq.begin() + 1, uniq.end());
uniq.erase(unique(uniq.begin() + 1, uniq.end()), uniq.end());
}
int get(T x) { return lower_bound(uniq.begin() + 1, uniq.end(), x) - uniq.begin(); }
}; template<class T>
class ScanlineA {
struct Segment {
int l, r;
int cover;
T len;
}; int n;
vector<T> dot;
vector<Segment> node; void push_up(int rt) {
if (node[rt].cover) node[rt].len = dot[node[rt].r + 1] - dot[node[rt].l];
else if (node[rt].l == node[rt].r) node[rt].len = 0;
else node[rt].len = node[rt << 1].len + node[rt << 1 | 1].len;
} void update(int rt, int l, int r, int x, int y, int cover) {
if (r < x || y < l) return;
if (x <= l && r <= y) return node[rt].cover += cover, push_up(rt);
int mid = l + r >> 1;
update(rt << 1, l, mid, x, y, cover);
update(rt << 1 | 1, mid + 1, r, x, y, cover);
push_up(rt);
} public:
ScanlineA() {}
ScanlineA(const vector<T> &_dot) { init(_dot); }
void init(const vector<T> &_dot) {
assert(_dot.size() >= 2);
n = _dot.size() - 2;
dot = _dot;
node.assign(n << 2, { 0,0,0,0 });
function<void(int, int, int)> build = [&](int rt, int l, int r) {
node[rt] = { l,r,0,0 };
if (l == r) return;
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
};
build(1, 1, n);
} void update(int x, int y, int cover) { update(1, 1, n, x, y, cover); } Segment query() { return node[1]; }
};
/// 面积并扫描线特化线段树,O(logn),配合离散化可以处理任意精度覆盖长度并问题
/// 求面积并,O(nlogn),面积并 = sum(两次扫描的距离*覆盖长度并)
//* 其中n代表线段数,并非端点数,端点数应为n+1
//* 端点编号从1开始,线段编号也从1开始
//* 任何区间(如l,r或x,y)都代表线段编号而非端点编号,即表示dot[l]到dot[r + 1],使用时注意 template<class T>
struct pk {
T val;
friend bool operator<(const pk &a, const pk &b) {
if (abs(a.val - b.val) < 1e-6) return false;//! 浮点型注意相等条件
return a.val < b.val;
}
friend bool operator==(const pk &a, const pk &b) { return !(a < b) && !(b < a); }
};
//* 专门处理浮点型比较判断的封装类 template<class T>
struct edge {
T x;
pk<T> y1, y2;
int rky1, rky2;
int flag;
}; int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
int cnt = 0;
cout << fixed << setprecision(2);
while (cnt++, cin >> n, n) {
if (cnt > 1) cout << '\n';
vector<edge<double>> e(2 * n + 1);
vector<pk<double>> y_src(2 * n + 1);
for (int i = 1;i <= n;i++) {
double x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
e[2 * i - 1] = { x1,{y1},{y2},0,0,1 };
e[2 * i] = { x2,{y1},{y2},0,0,-1 };
y_src[2 * i - 1] = { y1 };
y_src[2 * i] = { y2 };
} Discretization<pk<double>> dc(y_src);
for (int i = 1;i <= n;i++) {
e[2 * i - 1].rky1 = dc.get({ e[2 * i - 1].y1 });
e[2 * i - 1].rky2 = dc.get({ e[2 * i - 1].y2 });
e[2 * i].rky1 = dc.get({ e[2 * i].y1 });
e[2 * i].rky2 = dc.get({ e[2 * i].y2 });
}
sort(e.begin() + 1, e.end(), [&](const auto &a, const auto &b) {return a.x < b.x;}); vector<double> dot(dc.uniq.size());
for (int i = 1;i < dot.size();i++) dot[i] = dc.uniq[i].val;
ScanlineA<double> sla(dot);
double ans = 0;
sla.update(e[1].rky1, e[1].rky2 - 1, e[1].flag);
for (int i = 2;i <= 2 * n;i++) {
ans += (e[i].x - e[i - 1].x) * sla.query().len;
sla.update(e[i].rky1, e[i].rky2 - 1, e[i].flag);
}
cout << "Test case #" << cnt << '\n';
cout << "Total explored area: " << ans << '\n';
}
return 0;
}
/*
2
10 10 20 20
15 15 25 25.5
2
10 10 20 20
15 15 25 25.5
0 Test case #1
Total explored area: 180.00 Test case #2
Total explored area: 180.00
*/

NC51111 Atlantis的更多相关文章

  1. [POJ1151]Atlantis

    [POJ1151]Atlantis 试题描述 There are several ancient Greek texts that contain descriptions of the fabled ...

  2. 线段树---Atlantis

    题目网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110064#problem/A Description There are se ...

  3. hdu 1542 Atlantis(线段树,扫描线)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  4. 【POJ】1151 Atlantis(线段树)

    http://poj.org/problem?id=1151 经典矩形面积并吧.....很简单我就不说了... 有个很神的地方,我脑残没想到: 将线段变成点啊QAQ这样方便计算了啊 还有个很坑的地方, ...

  5. HDU 1542 Atlantis(线段树扫描线+离散化求面积的并)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  6. POJ 1542 Atlantis(线段树 面积 并)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542 参考网址:http://blog.csdn.net/sunmenggmail/article/d ...

  7. [POJ 1151] Atlantis

    一样的题:HDU 1542 Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18148   Accepted ...

  8. 【HDU 1542】Atlantis 矩形面积并(线段树,扫描法)

    [题目] Atlantis Problem Description There are several ancient Greek texts that contain descriptions of ...

  9. 【POJ1151】【扫描线+线段树】Atlantis

    Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...

  10. hdu 1542 Atlantis(段树&amp;扫描线&amp;面积和)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

随机推荐

  1. Makeflie脚本使用

    1.目标 2.Makefile的作用 自动化编译仿真 文件有引用层级关系,Tb会引用RTL顶层,RTL顶层也会引用一些其他的小的模块,编译的时候被引用的文件需要先进行编译. 脚本有两种模式,debug ...

  2. 15-TTL与非门

    TTL与非门 集成电路有两大类COMOS和TTL(三极管) 电路结构 工作原理 多发射结的三极管,两个输入之间是与的关系 输入低电平 输入高电平 A.B都是高电平 倒置放大 压差大的先导通 T3,T4 ...

  3. 2023年春秋杯网络安全联赛冬季赛-CRYPTO MISC WP

    浅谈:*代表未做出的,赛后复现了一下.本次题目还是挺有意思的,比赛期间做啦俩.题目有很多值得学习的东西.顺便在此记录一下.继续努力吧!! CRYPTO not_wiener(中等) 题目附件 查看代码 ...

  4. 【 js 】 构造函数返回的注意事项

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. Linux-进程管理-ps-kill

  6. 阿里云龙蜥8.6部署SQLSERVER2022的过程

    阿里云龙蜥8.6部署SQLSERVER2022的过程 背景 之前总结过, 但是发现当时是preview版本. 这里想升级一下, 并且顺便抄一下他的部分说明 下载 wget https://packag ...

  7. 基于OpenJDK部署clickhouse-local镜像的快捷方法

    基于OpenJDK部署clickhouse-local镜像的快捷方法 摘要 前期搭建了一套基于OpenJDK的Clickhouse的服务端的镜像 可以简单使用dbeaver进行连接与使用. 后来发现需 ...

  8. [转贴]Kubernetes之修改NodePort对外映射端口范围

    https://www.cnblogs.com/minseo/p/12606326.html k8s默认使用NodePort对外映射端口范围是30000-50000可以通过修改kube-apiserv ...

  9. 机器学习算法(四): 基于支持向量机的分类预测(SVM)

    机器学习算法(四): 基于支持向量机的分类预测 本项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc 1.相关流程 支 ...

  10. hydra 密码爆破工具入门

    Hydra(九头蛇海德拉)是希腊神话之中的一个怪兽,以九个头闻名于世,在Kali中hydray(hai der rua) 是默认被安装的,该工具是密码破解的老司机,可以破解各种登录密码,非常怪兽,但是 ...