题目链接

题目

题目描述

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.

输入描述

The input consists of several test cases. Each test case starts with a line containing a single integer n \((1 \leq n \leq 100)\) of available maps. The n following lines describe one map each. Each of these lines contains four numbers \(x_1;y_1;x_2;y_2\) \((0 \leq x_1 \lt x_2 \leq 100000;0 \leq y_1 \lt y_2 \leq 100000)\) , not necessarily integers. The values \((x_1; y_1)\) and \((x_2;y_2)\) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don't process it.

输出描述

For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case.

示例1

输入

2
10 10 20 20
15 15 25 25.5
0

输出

Test case #1
Total explored area: 180.00

题解

知识点:扫描线,线段树,离散化。

线段树+扫面线处理面积并问题,是板子题。

更新时,通过到上次更新的距离与线段覆盖长度,来计算面积。

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; template<class T>
struct Discretization {
vector<T> uniq;
Discretization() {}
Discretization(const vector<T> &src) { init(src); }
void init(const vector<T> &src) {
uniq = src;
sort(uniq.begin() + 1, uniq.end());
uniq.erase(unique(uniq.begin() + 1, uniq.end()), uniq.end());
}
int get(T x) { return lower_bound(uniq.begin() + 1, uniq.end(), x) - uniq.begin(); }
}; template<class T>
class ScanlineA {
struct Segment {
int l, r;
int cover;
T len;
}; int n;
vector<T> dot;
vector<Segment> node; void push_up(int rt) {
if (node[rt].cover) node[rt].len = dot[node[rt].r + 1] - dot[node[rt].l];
else if (node[rt].l == node[rt].r) node[rt].len = 0;
else node[rt].len = node[rt << 1].len + node[rt << 1 | 1].len;
} void update(int rt, int l, int r, int x, int y, int cover) {
if (r < x || y < l) return;
if (x <= l && r <= y) return node[rt].cover += cover, push_up(rt);
int mid = l + r >> 1;
update(rt << 1, l, mid, x, y, cover);
update(rt << 1 | 1, mid + 1, r, x, y, cover);
push_up(rt);
} public:
ScanlineA() {}
ScanlineA(const vector<T> &_dot) { init(_dot); }
void init(const vector<T> &_dot) {
assert(_dot.size() >= 2);
n = _dot.size() - 2;
dot = _dot;
node.assign(n << 2, { 0,0,0,0 });
function<void(int, int, int)> build = [&](int rt, int l, int r) {
node[rt] = { l,r,0,0 };
if (l == r) return;
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
};
build(1, 1, n);
} void update(int x, int y, int cover) { update(1, 1, n, x, y, cover); } Segment query() { return node[1]; }
};
/// 面积并扫描线特化线段树,O(logn),配合离散化可以处理任意精度覆盖长度并问题
/// 求面积并,O(nlogn),面积并 = sum(两次扫描的距离*覆盖长度并)
//* 其中n代表线段数,并非端点数,端点数应为n+1
//* 端点编号从1开始,线段编号也从1开始
//* 任何区间(如l,r或x,y)都代表线段编号而非端点编号,即表示dot[l]到dot[r + 1],使用时注意 template<class T>
struct pk {
T val;
friend bool operator<(const pk &a, const pk &b) {
if (abs(a.val - b.val) < 1e-6) return false;//! 浮点型注意相等条件
return a.val < b.val;
}
friend bool operator==(const pk &a, const pk &b) { return !(a < b) && !(b < a); }
};
//* 专门处理浮点型比较判断的封装类 template<class T>
struct edge {
T x;
pk<T> y1, y2;
int rky1, rky2;
int flag;
}; int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
int cnt = 0;
cout << fixed << setprecision(2);
while (cnt++, cin >> n, n) {
if (cnt > 1) cout << '\n';
vector<edge<double>> e(2 * n + 1);
vector<pk<double>> y_src(2 * n + 1);
for (int i = 1;i <= n;i++) {
double x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
e[2 * i - 1] = { x1,{y1},{y2},0,0,1 };
e[2 * i] = { x2,{y1},{y2},0,0,-1 };
y_src[2 * i - 1] = { y1 };
y_src[2 * i] = { y2 };
} Discretization<pk<double>> dc(y_src);
for (int i = 1;i <= n;i++) {
e[2 * i - 1].rky1 = dc.get({ e[2 * i - 1].y1 });
e[2 * i - 1].rky2 = dc.get({ e[2 * i - 1].y2 });
e[2 * i].rky1 = dc.get({ e[2 * i].y1 });
e[2 * i].rky2 = dc.get({ e[2 * i].y2 });
}
sort(e.begin() + 1, e.end(), [&](const auto &a, const auto &b) {return a.x < b.x;}); vector<double> dot(dc.uniq.size());
for (int i = 1;i < dot.size();i++) dot[i] = dc.uniq[i].val;
ScanlineA<double> sla(dot);
double ans = 0;
sla.update(e[1].rky1, e[1].rky2 - 1, e[1].flag);
for (int i = 2;i <= 2 * n;i++) {
ans += (e[i].x - e[i - 1].x) * sla.query().len;
sla.update(e[i].rky1, e[i].rky2 - 1, e[i].flag);
}
cout << "Test case #" << cnt << '\n';
cout << "Total explored area: " << ans << '\n';
}
return 0;
}
/*
2
10 10 20 20
15 15 25 25.5
2
10 10 20 20
15 15 25 25.5
0 Test case #1
Total explored area: 180.00 Test case #2
Total explored area: 180.00
*/

NC51111 Atlantis的更多相关文章

  1. [POJ1151]Atlantis

    [POJ1151]Atlantis 试题描述 There are several ancient Greek texts that contain descriptions of the fabled ...

  2. 线段树---Atlantis

    题目网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110064#problem/A Description There are se ...

  3. hdu 1542 Atlantis(线段树,扫描线)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  4. 【POJ】1151 Atlantis(线段树)

    http://poj.org/problem?id=1151 经典矩形面积并吧.....很简单我就不说了... 有个很神的地方,我脑残没想到: 将线段变成点啊QAQ这样方便计算了啊 还有个很坑的地方, ...

  5. HDU 1542 Atlantis(线段树扫描线+离散化求面积的并)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  6. POJ 1542 Atlantis(线段树 面积 并)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542 参考网址:http://blog.csdn.net/sunmenggmail/article/d ...

  7. [POJ 1151] Atlantis

    一样的题:HDU 1542 Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18148   Accepted ...

  8. 【HDU 1542】Atlantis 矩形面积并(线段树,扫描法)

    [题目] Atlantis Problem Description There are several ancient Greek texts that contain descriptions of ...

  9. 【POJ1151】【扫描线+线段树】Atlantis

    Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...

  10. hdu 1542 Atlantis(段树&amp;扫描线&amp;面积和)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

随机推荐

  1. 使用XStream,XMLSerializer 解析及格式转换

    博主原创,转载请注明出处 1.引入对应的maven依赖: <!--xstream--> <dependency> <groupId>com.thoughtworks ...

  2. pycharm设置保存时自动格式化代码(Auto Reformat Code)

    原文:https://blog.csdn.net/qq_41906934/article/details/124631826 1.手动格式化代码 Code -> Reformat Code 格式 ...

  3. CSS - 使用CSS 3D属性来完成页面视差滚动效果。

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. JMS微服务开发示例(四)把配置文件appsettings.json 部署在网关,共享给其他相同的微服务

    通常,多个相同的微服务器,它们的appsettings.json配置文件的内容都是一样的,如果,每次修改配置文件,都要逐个替换,那就太繁琐了,我们可以利用网关的文件共享功能,实现配置文件的统一更新. ...

  5. 今天是个好日子,TaxCore(POS软件)备案指北

    POS软件是什么?你好意思吗,还在用老掉牙的Winform. 关于POS 销售终端--POS(point of sale)是一种多功能终端,把它安装在信用卡的特约商户和受理网点中与计算机联成网络,就能 ...

  6. [转帖]Percolator 和 TiDB 事务算法

    https://cn.pingcap.com/blog/percolator-and-txn 本文先概括的讲一下 Google Percolator 的大致流程.Percolator 是 Google ...

  7. [转帖]使用 TiUP cluster 在单机上安装TiDB

    https://zhuanlan.zhihu.com/p/369414808   TiUP 是 TiDB 4.0 版本引入的集群运维工具,TiUP cluster 是 TiUP 提供的使用 Golan ...

  8. 【转帖】BGP:全穿透,半穿透,静态代播有什么区别

    一. 什么是BGP二. 具体实现方案2.1BGP的优点2.2 真伪BGP在使用效果上有什么差异​​​​​​​​​​​​​​2.2.1 真BGP实现了用户最佳路径的自动选择​​​​​​​​​​​​​​​ ...

  9. [转帖]ipset命令介绍与基本使用

    一. 介绍 ipset命令是用于管理内核中IP sets模块的,如iptables之于netfilter.ipset字面意思是一些IP地址组成一个集合(set).但是ipset用于用于存储IP地址,整 ...

  10. Oracle TNS 异常问题处理

    今天下午快下班时同事找我说自己的性能测试Oracle数据库 连不上了. 然后自己连上去简单看了一下. 因为已经是事后了, 所以没有截图,只通过文字说明. 环境说明:Win2012r2 + Oracle ...