BZOJ 1078: [SCOI2008]斜堆
1078: [SCOI2008]斜堆
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 770 Solved: 422
[Submit][Status][Discuss]
Description
斜堆(skew heap)是一种常用的数据结构。它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值
都比它父亲大。因此在整棵斜堆中,根的值最小。但斜堆不必是平衡的,每个结点的左右儿子的大小关系也没有任
何规定。在本题中,斜堆中各个元素的值均不相同。 在斜堆H中插入新元素X的过程是递归进行的:当H为空或者X
小于H的根结点时X变为新的树根,而原来的树根(如果有的话)变为X的左儿子。当X大于H的根结点时,H根结点的
两棵子树交换,而X(递归)插入到交换后的左子树中。 给出一棵斜堆,包含值为0~n的结点各一次。求一个结点
序列,使得该斜堆可以通过在空树中依次插入这些结点得到。如果答案不惟一,输出字典序最小的解。输入保证有
解。
Input
第一行包含一个整数n。第二行包含n个整数d1, d2, ... , dn, di < 100表示i是di的左儿子,di>=100表示i
是di-100的右儿子。显然0总是根,所以输入中不含d0。
Output
仅一行,包含n+1整数,即字典序最小的插入序列。
Sample Input
100 0 101 102 1 2
Sample Output
HINT
Source
因为每次插入点时,是先对当前点交换左右子树,再将新点插入左子树(如果新的结点>当前结点),所以可以知道,每个点如果没有左子树,必不可能有右子树。
考虑倒着找出插入点的顺序,专注于目前状态下最后一个插入的结点。可以知道这个结点在到达属于他的位置之前,一定是不断向左子树走的,所以可以认为这个点一定是一个“极左点”,即从根节点到它需要一直向左走。而且这个点一定没有右子树,因为原本这个位置上的点(如果有的话)现在已经搬家到新点的左子树了,所以新点的右儿子一定为空。满足这两个性质的点不一定唯一,但是我们应当选取深度最小的满足要求的点。考虑如果选取一个深度较大的点作为最后插入的点,它的某个祖先满足上面提到的两个性质,那么插入这个点时一定经过了它的祖先,并且交换了它祖先的两个子树,我们现在交换回来,出现了只有右子树,而左子树为空的非法情况,和一开始提到的结论不符,所以这个点不会是最后插入的点。但有一个特殊情况,就是这个点是叶子结点,且其唯一满足两性质的祖先就是它的父节点,此时不难发现,机缘巧合之下这个点也变成合法的最后插入点了。根据字典序最小的要求,我们应当先把这个值较大的点输出到答案序列的末尾,所以需要选取这个点作为目前的最后插入点而非其父节点。
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #define siz 1024 inline int get_c(void)
{
static char buf[siz];
static char *head = buf + siz;
static char *tail = buf + siz; if (head == tail)
fread(head = buf, , siz, stdin); return *head++;
} inline int get_i(void)
{
register int ret = ;
register int neg = false;
register int bit = get_c(); for (; bit < ; bit = get_c())
if (bit == '-')neg ^= true; for (; bit > ; bit = get_c())
ret = ret * + bit - ; return neg ? -ret : ret;
} #define maxn 205 int n, ans[maxn]; struct node
{
node *lson;
node *rson;
node *father; node(void)
{
lson = NULL;
rson = NULL;
father = NULL;
} inline void swap(void)
{
static node *temp; temp = lson;
lson = rson;
rson = temp;
}
}tree[maxn], *root = tree; inline int last(void)
{
node *t = root; while (t->rson)
t = t->lson; if (t->lson && !t->lson->lson)
t = t->lson; if (t == root)
root = t->lson;
else
t->father->lson = t->lson; if (t->lson)
t->lson->father = t->father; for (node *p = t->father; p; p = p->father)
p->swap(); return int(t - tree);
} signed main(void)
{
n = get_i(); for (int i = ; i <= n; ++i)
{
int fa = get_i(); if (fa < )
tree[i].father = tree + fa, tree[fa].lson = tree + i;
else fa -= ,
tree[i].father = tree + fa, tree[fa].rson = tree + i;
} for (int i = n; i >= ; --i)ans[i] = last(); for (int i = ; i <= n; ++i)printf("%d ", ans[i]); //system("pause");
}
@Author: YouSiki
BZOJ 1078: [SCOI2008]斜堆的更多相关文章
- bzoj 1078 [SCOI2008]斜堆 —— 斜堆
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1078 考察斜堆的性质: 一个点如果没有左子树,也一定没有右子树: 看了这篇精美的博客:htt ...
- 【BZOJ 1078】 1078: [SCOI2008]斜堆
1078: [SCOI2008]斜堆 Description 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值都比它父亲大.因此在整棵斜堆中, ...
- 【bzoj1078】[SCOI2008]斜堆
2016-05-31 16:34:09 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1078 挖掘斜堆的性质233 http://www.cp ...
- 【BZOJ1078】[SCOI2008]斜堆(性质题)
[BZOJ1078][SCOI2008]斜堆(性质题) 题面 BZOJ 洛谷 题解 考虑一下这道题目的性质吧.思考一下最后插入进来的数是什么样子的.首先因为它是最后插入进来的,所以一定是比某个数小,然 ...
- 【bzoj1078】 SCOI2008—斜堆
http://www.lydsy.com/JudgeOnline/problem.php?id=1078 (题目链接) 题意 给出一个斜堆,并给出其插入的操作,求一个字典序最小的插入顺序. Solut ...
- [SCOI2008]斜堆
题目大意 1.题目描述 斜堆(skew heap)是一种常用的数据结构. 它也是二叉树,且满足与二叉堆相同的堆性质: 每个非根结点的值都比它父亲大.因此在整棵斜堆中,根的值最小. . 但斜堆不必是平衡 ...
- BZOJ1078 [SCOI2008]斜堆 堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1078 题意概括 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的 ...
- P2475 [SCOI2008]斜堆(递归模拟)
思路 可并堆真是一种神奇的东西 不得不说这道题是道好题,虽然并不需要可并堆,但是能加深对可并堆的理解 首先考虑斜堆的性质,斜堆和左偏树相似,有如下的性质 一个节点如果有右子树,就一定有左子树 最后插入 ...
- P2475 [SCOI2008]斜堆
题目背景 四川2008NOI省选 题目描述 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相 同的堆性质:每个非根结点的值都比它父亲大.因此在整棵斜堆中,根的值最小. 但 ...
随机推荐
- IOS开发之Bug--View是懒加载导致出误以为是UI加载的bug
虽然分类为bug,但也算的上是一个问题,一个很简单的问题.先来看看问题的重现,就写了简单的Demo验证效果: 问题:点击ViewController跳转到TwoViewController,发现会延迟 ...
- 下一代Asp.net开发规范OWIN(2)—— Katana介绍以及使用
接上篇OWIN产生的背景以及简单介绍,在了解了OWIN规范的来龙去脉后,接下来看一下Katana这个OWIN规范的实现,并看看如何使用在我们的Web开发中. 阅读目录: 一. Katana项目的结构和 ...
- Linux命令学习总结:reboot命令
命令简介: 该命令用来重启Linux系统.相当于Windows系统中的restart命令. 命令语法: /sbin/reboot [-n] [-w] [-d] [-f] [-i] 或 reboot [ ...
- SOA架构设计经验分享—架构、职责、数据一致性
阅读目录: 1.背景介绍 2.SOA的架构层次 2.1.应用服务(原子服务) 2.2.组合服务 2.3.业务服务(编排服务) 3.SOA化的重构 3.1.保留服务空间,为了将来服务的组合 4.运用DD ...
- shell变量详解
1 shell变量基础 shell变量是一种很"弱"的变量,默认情况下,一个变量保存一个串,shell不关心这个串是什么含义.所以若要进行数学运算,必须使用一些命令例如let.de ...
- vs.net Web.csproj.webinfo文件
使用VS工具打开工程的时候,请直接打开BookShop.sln文件, 请修改WEB/Web.csproj.webinfo文件中的<Web URLPath = "http://local ...
- Linux简介及常用命令使用4--linux高级命令与技巧
top 几个磁盘fdisk -l 磁盘空间 df -lhdf -al 查看进程:ps -ef"grep java杀死进程:kill -9 进程号 more中过滤 more xxx |grep ...
- linux下的一些操作(持续更新)
文件操作 创建文件夹: mkdir 文件夹名称 查看当前目录的文件夹及文件:ls 参看当前文件夹下的所有文件及信息: ls -l 删除空文件夹:rmdir 文件夹名称 删除非空文件夹:rm rf 文件 ...
- [转]推荐highcharts学习网址
highcharts学习网址1:http://www.hcharts.cn/docs/index.php?doc=basic(百度highcharts中文教程即可) highcharts学习网址2:h ...
- Jenkins学习九:Jenkins插件之构建MSBuild
Jenkins是Java语言编写的,一直好奇是否可以构建NET语言的项目,目前只了解到有一个插件MSBuild支持构建NET项目. 一.Jenkins安装插件MSBuild 二.VS构建CsharpH ...