1078: [SCOI2008]斜堆

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 770  Solved: 422
[Submit][Status][Discuss]

Description

  斜堆(skew heap)是一种常用的数据结构。它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值
都比它父亲大。因此在整棵斜堆中,根的值最小。但斜堆不必是平衡的,每个结点的左右儿子的大小关系也没有任
何规定。在本题中,斜堆中各个元素的值均不相同。 在斜堆H中插入新元素X的过程是递归进行的:当H为空或者X
小于H的根结点时X变为新的树根,而原来的树根(如果有的话)变为X的左儿子。当X大于H的根结点时,H根结点的
两棵子树交换,而X(递归)插入到交换后的左子树中。 给出一棵斜堆,包含值为0~n的结点各一次。求一个结点
序列,使得该斜堆可以通过在空树中依次插入这些结点得到。如果答案不惟一,输出字典序最小的解。输入保证有
解。

Input

  第一行包含一个整数n。第二行包含n个整数d1, d2, ... , dn, di < 100表示i是di的左儿子,di>=100表示i
是di-100的右儿子。显然0总是根,所以输入中不含d0。

Output

  仅一行,包含n+1整数,即字典序最小的插入序列。

Sample Input

6
100 0 101 102 1 2

Sample Output

0 1 2 3 4 5 6

HINT

 

Source

 

[Submit][Status][Discuss]

因为每次插入点时,是先对当前点交换左右子树,再将新点插入左子树(如果新的结点>当前结点),所以可以知道,每个点如果没有左子树,必不可能有右子树。

考虑倒着找出插入点的顺序,专注于目前状态下最后一个插入的结点。可以知道这个结点在到达属于他的位置之前,一定是不断向左子树走的,所以可以认为这个点一定是一个“极左点”,即从根节点到它需要一直向左走。而且这个点一定没有右子树,因为原本这个位置上的点(如果有的话)现在已经搬家到新点的左子树了,所以新点的右儿子一定为空。满足这两个性质的点不一定唯一,但是我们应当选取深度最小的满足要求的点。考虑如果选取一个深度较大的点作为最后插入的点,它的某个祖先满足上面提到的两个性质,那么插入这个点时一定经过了它的祖先,并且交换了它祖先的两个子树,我们现在交换回来,出现了只有右子树,而左子树为空的非法情况,和一开始提到的结论不符,所以这个点不会是最后插入的点。但有一个特殊情况,就是这个点是叶子结点,且其唯一满足两性质的祖先就是它的父节点,此时不难发现,机缘巧合之下这个点也变成合法的最后插入点了。根据字典序最小的要求,我们应当先把这个值较大的点输出到答案序列的末尾,所以需要选取这个点作为目前的最后插入点而非其父节点。

 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #define siz 1024 inline int get_c(void)
{
static char buf[siz];
static char *head = buf + siz;
static char *tail = buf + siz; if (head == tail)
fread(head = buf, , siz, stdin); return *head++;
} inline int get_i(void)
{
register int ret = ;
register int neg = false;
register int bit = get_c(); for (; bit < ; bit = get_c())
if (bit == '-')neg ^= true; for (; bit > ; bit = get_c())
ret = ret * + bit - ; return neg ? -ret : ret;
} #define maxn 205 int n, ans[maxn]; struct node
{
node *lson;
node *rson;
node *father; node(void)
{
lson = NULL;
rson = NULL;
father = NULL;
} inline void swap(void)
{
static node *temp; temp = lson;
lson = rson;
rson = temp;
}
}tree[maxn], *root = tree; inline int last(void)
{
node *t = root; while (t->rson)
t = t->lson; if (t->lson && !t->lson->lson)
t = t->lson; if (t == root)
root = t->lson;
else
t->father->lson = t->lson; if (t->lson)
t->lson->father = t->father; for (node *p = t->father; p; p = p->father)
p->swap(); return int(t - tree);
} signed main(void)
{
n = get_i(); for (int i = ; i <= n; ++i)
{
int fa = get_i(); if (fa < )
tree[i].father = tree + fa, tree[fa].lson = tree + i;
else fa -= ,
tree[i].father = tree + fa, tree[fa].rson = tree + i;
} for (int i = n; i >= ; --i)ans[i] = last(); for (int i = ; i <= n; ++i)printf("%d ", ans[i]); //system("pause");
}

@Author: YouSiki

BZOJ 1078: [SCOI2008]斜堆的更多相关文章

  1. bzoj 1078 [SCOI2008]斜堆 —— 斜堆

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1078 考察斜堆的性质: 一个点如果没有左子树,也一定没有右子树: 看了这篇精美的博客:htt ...

  2. 【BZOJ 1078】 1078: [SCOI2008]斜堆

    1078: [SCOI2008]斜堆 Description 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值都比它父亲大.因此在整棵斜堆中, ...

  3. 【bzoj1078】[SCOI2008]斜堆

    2016-05-31 16:34:09 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1078 挖掘斜堆的性质233 http://www.cp ...

  4. 【BZOJ1078】[SCOI2008]斜堆(性质题)

    [BZOJ1078][SCOI2008]斜堆(性质题) 题面 BZOJ 洛谷 题解 考虑一下这道题目的性质吧.思考一下最后插入进来的数是什么样子的.首先因为它是最后插入进来的,所以一定是比某个数小,然 ...

  5. 【bzoj1078】 SCOI2008—斜堆

    http://www.lydsy.com/JudgeOnline/problem.php?id=1078 (题目链接) 题意 给出一个斜堆,并给出其插入的操作,求一个字典序最小的插入顺序. Solut ...

  6. [SCOI2008]斜堆

    题目大意 1.题目描述 斜堆(skew heap)是一种常用的数据结构. 它也是二叉树,且满足与二叉堆相同的堆性质: 每个非根结点的值都比它父亲大.因此在整棵斜堆中,根的值最小. . 但斜堆不必是平衡 ...

  7. BZOJ1078 [SCOI2008]斜堆 堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1078 题意概括 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的 ...

  8. P2475 [SCOI2008]斜堆(递归模拟)

    思路 可并堆真是一种神奇的东西 不得不说这道题是道好题,虽然并不需要可并堆,但是能加深对可并堆的理解 首先考虑斜堆的性质,斜堆和左偏树相似,有如下的性质 一个节点如果有右子树,就一定有左子树 最后插入 ...

  9. P2475 [SCOI2008]斜堆

    题目背景 四川2008NOI省选 题目描述 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相 同的堆性质:每个非根结点的值都比它父亲大.因此在整棵斜堆中,根的值最小. 但 ...

随机推荐

  1. Android 第一http请求访问慢,以后就快了的问题

    android的服务端是用MVC+ef,第一次访问特别慢,第一次以后就快了. 在网上找了很多原因,解决不了.后来发现是应用程序池的问题,准确说是ef的问题,应用程序池被回收了,请求就慢了,

  2. 关于web页面性能测量指标与建议

    首先看一个图: 注:右图在我们工作中经常用到 我们专注的web性能指标有那些? 1.页面加载时间 从页面开始加载到页面onload事件触发的时间.一般来说onload触发代表着直接通过HTML引用的C ...

  3. 在 ASP.NET MVC 中充分利用 WebGrid (microsoft 官方示例)

    在 ASP.NET MVC 中充分利用 WebGrid https://msdn.microsoft.com/zh-cn/magazine/hh288075.aspx Stuart Leeks 下载代 ...

  4. SQL Server Integration Services(SSIS) 包配置与部署

    SSIS配置此处的配置方式,主要针对到正式服务器上要修改服务器名,和连接服务器等配置注意:1. 包配置在windows2008上生成后,在windows2003上mysql的配置无法使用,总是报错连接 ...

  5. break、continue、return

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. OSX下 pip更新及安装python库

    直接执行安装命令 $ pip install builtwith 提示pip当前版本为7.1.2,要使用"pip install --upgrade pip"升级到8.1.2 $  ...

  7. 常用ADC滤波处理

    #define N 70 XDATA WORD Value_buf[N]; XDATA DWORD ADCValue; static BYTE v_gu8cnt=0; static BYTE i=0; ...

  8. 使用 Redis 实现分布式锁

    这里有一篇文章介绍了用redis实现分布式的方式 .不是简简单单的用setnx来实现,讲述了几种实际项目中的一些情况.猛击下面链接查看 http://www.oschina.net/translate ...

  9. Release Management 安装 之 集成TFS

    集成TFS时需要在TFS服务器执行 tfssecurity /g+ "Team Foundation Service Accounts" n:ALM\rmtfsint ALLOW ...

  10. faster_rcnn c++版本的 caffe 封装(1)

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 由于需要把FasterRCNN做的工程化,因此这里需要对Caff ...