代码随想录算法训练营

1005.K次取反后最大化的数组和

题目链接:1005.K次取反后最大化的数组和

给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)

以这种方式修改数组后,返回数组可能的最大和。

  • 输入:A = [4,2,3], K = 1
  • 输出:5
  • 解释:选择索引 (1,) ,然后 A 变为 [4,-2,3]。

总体思路

由于通过K次取反后的最大的数组和,因此让绝对值大的负数变为正数,当前数值达到最大,可达到整体最优:整个数组和达到最大。

那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。

那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。

虽然这道题目大家做的时候,可能都不会去想什么贪心算法,一鼓作气,就AC了。

我这里其实是为了给大家展现出来 经常被大家忽略的贪心思路,这么一道简单题,就用了两次贪心!

那么本题的解题步骤为:

  • 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
  • 第二步:从前向后遍历,遇到负数将其变为正数,同时K--
  • 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
  • 第四步:求和

    代码实现:
class Solution {
static bool cmp(int a, int b) {
return abs(a) > abs(b);
}
public:
int largestSumAfterKNegations(vector<int>& A, int K) {
sort(A.begin(), A.end(), cmp); // 第一步
for (int i = 0; i < A.size(); i++) { // 第二步
if (A[i] < 0 && K > 0) {
A[i] *= -1;
K--;
}
}
if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步
int result = 0;
for (int a : A) result += a; // 第四步
return result;
}
};

134. 加油站

题目链接:134. 加油站

在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。

说明:

  • 如果题目有解,该答案即为唯一答案。
  • 输入数组均为非空数组,且长度相同。
  • 输入数组中的元素均为非负数。

    示例 1: 输入:
  • gas = [1,2,3,4,5]
  • cost = [3,4,5,1,2]

总体思路

暴力解法

暴力的方法很明显就是O(n^2)的,遍历每一个加油站为起点的情况,模拟一圈。

如果跑了一圈,中途没有断油,而且最后油量大于等于0,说明这个起点是ok的。

暴力的方法思路比较简单,但代码写起来也不是很容易,关键是要模拟跑一圈的过程。

for循环适合模拟从头到尾的遍历,而while循环适合模拟环形遍历,要善于使用while!

class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
for (int i = 0; i < cost.size(); i++) {
int rest = gas[i] - cost[i]; // 记录剩余油量
int index = (i + 1) % cost.size();
while (rest > 0 && index != i) { // 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了)
rest += gas[index] - cost[index];
index = (index + 1) % cost.size();
}
// 如果以i为起点跑一圈,剩余油量>=0,返回该起始位置
if (rest >= 0 && index == i) return i;
}
return -1;
}
};

贪心算法(一)

直接从全局进行贪心选择,情况如下:

  • 情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的
  • 情况二:rest[i] = gas[i]-cost[i]为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。
  • 情况三:如果累加的最小值是负数,汽车就要从非0节点出发,从后向前,看哪个节点能把这个负数填平,能把这个负数填平的节点就是出发节点。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int curSum = 0;
int min = INT_MAX; // 从起点出发,油箱里的油量最小值
for (int i = 0; i < gas.size(); i++) {
int rest = gas[i] - cost[i];
curSum += rest;
if (curSum < min) {
min = curSum;
}
}
if (curSum < 0) return -1; // 情况1
if (min >= 0) return 0; // 情况2
// 情况3
for (int i = gas.size() - 1; i >= 0; i--) {
int rest = gas[i] - cost[i];
min += rest;
if (min >= 0) {
return i;
}
}
return -1;
}
};

该方法并没有在局部最优进行求解,只是全局最优,因此不是完全的贪心解法。

贪心解法(二)

换一个思路,首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。

每个加油站的剩余量rest[i]为gas[i] - cost[i]。

i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。



那么为什么一旦[0,i] 区间和为负数,起始位置就可以是i+1呢,i+1后面就不会出现更大的负数?

如果出现更大的负数,就是更新i,那么起始位置又变成新的i+1了。

那有没有可能 [0,i] 区间 选某一个作为起点,累加到 i这里 curSum是不会小于零呢? 如图:



如果 curSum<0 说明 区间和1 + 区间和2 < 0, 那么 假设从上图中的位置开始计数curSum不会小于0的话,就是 区间和2>0。

区间和1 + 区间和2 < 0 同时 区间和2>0,只能说明区间和1 < 0, 那么就会从假设的箭头初就开始从新选择其实位置了。

那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置

局部最优可以推出全局最优,找不出反例,试试贪心!

class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int curSum = 0;
int totalSum = 0;
int start = 0;
for (int i = 0; i < gas.size(); i++) {
curSum += gas[i] - cost[i];
totalSum += gas[i] - cost[i];
if (curSum < 0) { // 当前累加rest[i]和 curSum一旦小于0
start = i + 1; // 起始位置更新为i+1
curSum = 0; // curSum从0开始
}
}
if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
return start;
}
};

135. 分发糖果

题目链接:135. 分发糖果

老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。

你需要按照以下要求,帮助老师给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻的孩子中,评分高的孩子必须获得更多的糖果。

    那么这样下来,老师至少需要准备多少颗糖果呢?

    示例 1:
  • 输入: [1,0,2]
  • 输出: 5
  • 解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。

总体思路

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼

先确定右边评分大于左边的情况(也就是从前向后遍历)

此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果

局部最优可以推出全局最优。

如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1

// 从前向后
for (int i = 1; i < ratings.size(); i++) {
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}

再确定左孩子大于右孩子的情况(从后向前遍历)

遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?

因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。

如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:



所以确定左孩子大于右孩子的情况一定要从后向前遍历!

如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。

那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。

局部最优可以推出全局最优。

所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多

// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1] ) {
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
}
}

整体代码:

class Solution {
public:
int candy(vector<int>& ratings) {
vector<int> candyVec(ratings.size(), 1);
// 从前向后
for (int i = 1; i < ratings.size(); i++) {
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}
// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1] ) {
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
}
}
// 统计结果
int result = 0;
for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
return result;
}
};

# 代码随想录算法训练营Day31 贪心算法| 1005.K次取反后最大化的数组和 134. 加油站 135. 分发糖果的更多相关文章

  1. Leetcode 1005. K 次取反后最大化的数组和

    1005. K 次取反后最大化的数组和  显示英文描述 我的提交返回竞赛   用户通过次数377 用户尝试次数413 通过次数385 提交次数986 题目难度Easy 给定一个整数数组 A,我们只能用 ...

  2. 1005.K次取反后最大化的数组和

    1005.K次取反后最大化的数组和 目录 1005.K次取反后最大化的数组和 题目 题解 排序+维护最小值min 题目 给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 ...

  3. LeetCode1005 K次取反后最大化的数组和(贪心+Java简单排序)

    题目: 给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次.(我们可以多次选择同一个索引 i.) 以这种方式修 ...

  4. #C++初学记录(贪心算法#结构体#贪心算法)

    贪心算法#结构体 Problem Description "今年暑假不AC?" "是的." "那你干什么呢?" "看世界杯呀,笨蛋 ...

  5. 正則表達式re中的贪心算法和非贪心算法 在python中的应用

    之前写了一篇有关正則表達式的文章.主要是介绍了正則表達式中通配符 转义字符 字符集 选择符和子模式 可选项和反复子模式 字符串的開始和结尾 ,有兴趣的能够查看博客内容. 此文章主要内容将要介绍re中的 ...

  6. Leetcode题解 - 贪心算法部分简单题目代码+思路(860、944、1005、1029、1046、1217、1221)

    leetcode真的是一个学习阅读理解的好地方 860. 柠檬水找零 """ 因为用户支付的只会有5.10.20 对于10元的用户必须找一个5 对于20元的用户可以找(三 ...

  7. js算法初窥05(算法模式02-动态规划与贪心算法)

    在前面的文章中(js算法初窥02(排序算法02-归并.快速以及堆排)我们学习了如何用分治法来实现归并排序,那么动态规划跟分治法有点类似,但是分治法是把问题分解成互相独立的子问题,最后组合它们的结果,而 ...

  8. 基于贪心算法求解TSP问题(JAVA)

    概述 前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化! 详细 代码下载:http://www.de ...

  9. JavaScript算法模式——动态规划和贪心算法

    动态规划 动态规划(Dynamic Programming,DP)是一种将复杂问题分解成更小的子问题来解决的优化算法.下面有一些用动态规划来解决实际问题的算法: 最少硬币找零 给定一组硬币的面额,以及 ...

  10. python常用算法(6)——贪心算法,欧几里得算法

    1,贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的的时在某种意义上的局部最优解. 贪心算法并不保证会得到最优解,但 ...

随机推荐

  1. salesforce零基础学习(一百二十七)Custom Metadata Type 篇二

    本篇参考: salesforce零基础学习(一百一十一)custom metadata type数据获取方式更新 https://developer.salesforce.com/docs/atlas ...

  2. Goravel ORM 新增模型关联,用 Golang 写关联也可以跟 Laravel 一样简单

    关于 Goravel Goravel 是一个功能完备.具有良好扩展能力的 Web 应用程序框架.作为一个起始脚手架帮助 Golang 开发者快速构建自己的应用.框架风格与 Laravel 保持一致,让 ...

  3. Freemon停止提供免费域名注册了

    前言 freemon是一家国外的域名注册商,提供很多顶级的域名注册,最棒的是它还提供了五个免费的顶级一级域名注册分别有:tk.cf.ml.ga.gq,而且据我所知是不限量注册,最高一年使用期,可以免费 ...

  4. 使用 DeepSpeed 和 Hugging Face 🤗 Transformer 微调 FLAN-T5 XL/XXL

    Scaling Instruction-Finetuned Language Models 论文发布了 FLAN-T5 模型,它是 T5 模型的增强版.FLAN-T5 由很多各种各样的任务微调而得,因 ...

  5. RPC 与 Restful 的区别

    PRC 是一种技术的代名词,HTTP 是一种协议,RPC 可以通过 HTTP 来实现,也可以通过 Socket 自己实现一套协议来实现.所以谈论为什么用 RPC 不用 HTTP 是无意义的.但我们习惯 ...

  6. VBA GET POST HTTP VBA网络爬虫 最新Excel自动获取股票信息源码 EXCEL自动获取网络数据 最新VBA自动抓取股票数据源码

    最新Excel自动获取股票信息源码 EXCEL自动获取网络数据 最新VBA自动抓取股票数据源码 通过接口获取股票数据内容的主要优点包括以下几点: 实时性高:通过访问股票数据接口,可以实时获取到股票的实 ...

  7. C++/Qt网络通讯模块设计与实现(总结)

    至此,C++/Qt网络通讯模块设计与实现已分析完毕,代码已应用于实际产品中. C++/Qt网络通讯模块设计与实现(一) 该章节从模块的功能需求以及非功能需求进行分析,即网络通讯模块负责网络数据包的发送 ...

  8. java基础--lambda表达式

    lambda表达式,一种常见用法,就是简化匿名内部类.使用前提条件:如果一个方法A(),只涉及一个抽象方法待实现,那么使用A()时,涉及到匿名内部类,就可以简化为 lambda 表达式 lambda表 ...

  9. Linux:管道命令与文本处理三剑客(grep、sed、awk)

    1 管道命令(pipe)介绍 众所周知,bash命令执行的时候会输出信息,但有时这些信息必须要经过几次处理之后才能得到我们想要的格式,此时应该如何处置?这就牵涉到 管道命令(pipe) 了.管道命令使 ...

  10. 搭建CTF动态靶场

    前言 本文借鉴文章:https://www.yuque.com/dengfenglai-esbap/kb/mc4k41?#xOxNG 在此基础上修改了一点(照着原来的做没成功),感谢这位师傅给的资源. ...