2024-01-17:lc的30. 串联所有单词的子串
2024-01-17:用go语言,给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。
s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。
例如,如果 words = ["ab","cd","ef"],
那么 "abcdef", "abefcd","cdabef",
"cdefab","efabcd", 和 "efcdab" 都是串联子串,
"acdbef" 不是串联子串,因为他不是任何 words 排列的连接。
返回所有串联字串在 s 中的开始索引。
你可以以 任意顺序 返回答案。
1 <= s.length <= 10^4,
1 <= words.length <= 5000,
1 <= words[i].length <= 30。
words[i] 和 s 由小写英文字母组成。
输入:s = "barfoothefoobarman", words = ["foo","bar"]。
输出:[0,9]。
来自lc的30. 串联所有单词的子串。
答案2024-01-17:
来自左程云。
大体过程如下:
定义一些常量和变量,包括
BASE和MAXN,以及存储结果的切片ans。实现
hashValue函数,用于计算字符串的哈希值。这里使用一个基于索引的简单哈希函数将字符串映射为一个唯一的整数。实现
buildHash函数,用于构建字符串的前缀哈希数组。通过动态规划的方式计算每个位置的哈希值。实现
hashValueRange函数,用于计算子串的哈希值。利用前缀哈希数组,根据子串的起始和结束位置计算哈希值。创建一个哈希表
mapCount用于存储words中每个单词的出现次数。构建字符串
s的前缀哈希数组hash。创建一个数组
pow,用于存储 BASE 的幂次方,便于后续计算子串的哈希值。创建一个滑动窗口
window,用于记录当前窗口中每个单词出现的次数。循环遍历
s中每个起始位置的可能性(即从 0 到wordLen-1)。在每个起始位置,初始化一个变量
debt用于记录还需要凑齐的单词数。在每个起始位置,遍历
words中的单词,依次将其添加到窗口中,并更新debt的值。如果
debt等于 0,表示窗口中已经包含了所有words中的单词,则将当前起始位置加入结果数组ans中。对于每个起始位置,向右移动窗口,同时更新窗口中单词的出现次数。
检查窗口中的哈希值和单词出现次数是否符合要求,如果符合则将当前起始位置加入结果数组
ans中。清空滑动窗口
window。返回结果数组
ans。
总的时间复杂度:O(n * m * k),其中 n 是字符串 s 的长度,m 是 words 的长度,k 是单词的平均长度。
总的额外空间复杂度:O(n),其中 n 是字符串 s 的长度,主要用于存储哈希表、前缀哈希数组和结果数组。
go完整代码如下:
package main
import (
"fmt"
)
var BASE = 499
var MAXN = 10001
func hashValue(str string) int64 {
if str == "" {
return 0
}
n := len(str)
ans := int64(str[0]-'a') + 1
for j := 1; j < n; j++ {
ans = ans*int64(BASE) + int64(str[j]-'a') + 1
}
return ans
}
func buildHash(str string) []int64 {
hash := make([]int64, len(str))
hash[0] = int64(str[0]-'a') + 1
for j := 1; j < len(str); j++ {
hash[j] = hash[j-1]*int64(BASE) + int64(str[j]-'a') + 1
}
return hash
}
func hashValueRange(l, r int, hash []int64, pow []int64) int64 {
ans := hash[r-1]
if l > 0 {
ans -= hash[l-1] * pow[r-l]
}
return ans
}
func findSubstring(s string, words []string) []int {
var ans []int
if len(s) == 0 || len(words) == 0 {
return ans
}
wordLen := len(words[0])
wordNum := len(words)
allLen := wordLen * wordNum
mapCount := make(map[int64]int)
for _, key := range words {
v := hashValue(key)
mapCount[v]++
}
hash := buildHash(s)
pow := make([]int64, MAXN)
pow[0] = 1
for j := 1; j < MAXN; j++ {
pow[j] = pow[j-1] * int64(BASE)
}
window := make(map[int64]int)
for init := 0; init < wordLen && init+allLen <= len(s); init++ {
debt := wordNum
for l, r, part := init, init+wordLen, 0; part < wordNum; l += wordLen {
cur := hashValueRange(l, r, hash, pow)
window[cur]++
if window[cur] <= mapCount[cur] {
debt--
}
r += wordLen
part++
}
if debt == 0 {
ans = append(ans, init)
}
for l1, r1, l2, r2 := init, init+wordLen, init+allLen, init+allLen+wordLen; r2 <= len(s); l1, r1, l2, r2 = l1+wordLen, r1+wordLen, l2+wordLen, r2+wordLen {
out := hashValueRange(l1, r1, hash, pow)
in := hashValueRange(l2, r2, hash, pow)
window[out]--
if window[out] < mapCount[out] {
debt++
}
window[in]++
if window[in] <= mapCount[in] {
debt--
}
if debt == 0 {
ans = append(ans, r1)
}
}
for key := range window {
delete(window, key)
}
}
return ans
}
func main() {
s := "barfoothefoobarman"
words := []string{"foo", "bar"}
result := findSubstring(s, words)
fmt.Println(result)
}

2024-01-17:lc的30. 串联所有单词的子串的更多相关文章
- Java实现 LeetCode 30 串联所有单词的子串
30. 串联所有单词的子串 给定一个字符串 s 和一些长度相同的单词 words.找出 s 中恰好可以由 words 中所有单词串联形成的子串的起始位置. 注意子串要与 words 中的单词完全匹配, ...
- leetcode 30. 串联所有单词的子串 【时间击败 90.28%】 【内存击败 97.44%】
这道题让我从早做到晚-3--- 设len=words[0].length(). 一开始我按照words的顺序扩大区间,发现这样就依赖words的顺序.之后改成遍历s的所有长度为len*words.le ...
- [LeetCode] 30. 串联所有单词的子串
题目链接: https://leetcode-cn.com/problems/substring-with-concatenation-of-all-words/ 题目描述: 给定一个字符串 s 和一 ...
- Leetcode 30 串联所有单词的子串 滑动窗口+map
见注释.滑动窗口还是好用. class Solution { public: vector<int> findSubstring(string s, vector<string> ...
- [LeetCode] 30. Substring with Concatenation of All Words 串联所有单词的子串
You are given a string, s, and a list of words, words, that are all of the same length. Find all sta ...
- [LeetCode] Substring with Concatenation of All Words 串联所有单词的子串
You are given a string, s, and a list of words, words, that are all of the same length. Find all sta ...
- 【LeetCode-面试算法经典-Java实现】【030-Substring with Concatenation of All Words(串联全部单词的子串)】
[030-Substring with Concatenation of All Words(串联全部单词的子串)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Yo ...
- 【LeetCode 30】串联所有单词的子串
题目链接 [题解] 开个字典树记录下所有的单词. 然后注意题目的已知条件 每个单词的长度都是一样的. 这就说明不会出现某个字符串是另外一个字符串的前缀的情况(除非相同). 所以可以贪心地匹配(遇到什么 ...
- leetcode30 串联所有单词的子串
先对words中的单词排列组合,然后对s滑窗操作:部分样例超时,代码如下: class Solution { public: vector<int> findSubstring(strin ...
- 2019/01/17 基于windows使用fabric将gitlab的文件远程同步到服务器(git)
觉得django项目把本地更新push到gitlab,再执行fabric脚本从gitlab更新服务器项目挺方便的,当然从本地直接到服务器就比较灵活. 2019/01/17 基于windows使用fab ...
随机推荐
- cyclone3内部资源
CycloneIII内部资源概述 目录 CycloneIII内部资源概述 Logic Elements and Logic Array Blocks(逻辑元件和逻辑阵列块) LE LAB LAB In ...
- 【luogu题解】T378828 位运算
位运算 题目背景 题目由 daiyulong20120222 创作(me) 并由 QBW1117完善以及数据 . 题目描述 给定两个数\(x,y\) ,在给定一个位运算符号 \(c\). 请你列出 \ ...
- Video教程的Domain设计
Domain设计 下面将介绍Video的表设计,和模型定义. 表设计 Videos设计 /// <summary> /// 视频聚合 /// </summary> public ...
- JAVA培训
类 类名 对象名=new 类名(); 面向对象的三种特性 * 封装 原理:利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成一个不可分割的独立实体.数据被保护在抽象数据类型的内部,尽可能地隐藏 ...
- 《最新出炉》系列初窥篇-Python+Playwright自动化测试-35-处理web页面定位toast-上篇
1.简介 在使用appium写app自动化的时候介绍toast的相关元素的定位,在Web UI测试过程中,也经常遇到一些toast(出现之后一闪而过,不留下一点点痕迹),那么这个toast我们这边如何 ...
- windows中MySQL忘记密码
前言: 一直都是连接公司项目数据库,许久未连接本地的数据库,密码忘记了 步骤: 进入本机安装mysql的bin目录下 暂停mysql服务 net stop mysql 设置跳过密码授权登录 my ...
- 用元编程来判断STL类型
在此之前,先来回顾元编程当中的一个重要概念. template<typename _Tp, _Tp __v> struct integral_constant { static con ...
- 4 HTTP的“四层”和“七层”
目录 1 四层:TCP/IP 网络分层模型 2 七层:OSI网络分层模型 3 TCP/IP 协议栈的工作方式 1 四层:TCP/IP 网络分层模型 四层是指TCP/IP 网络分层模型. 第一层:&qu ...
- Java五种设计模式实现奶茶订单生成系统小DEMO
前言 这是大学时候上设计模式这门课写的程序,当时课程任务是要求结合五个设计模式写一个系统,最近偶然翻到,把系统分享一下. 成品预览 主界面 功能介绍 订单管理系统,实现了对订单的增删改查.且实现了 ...
- Python实现模块热加载
为什么需要热加载 在某些情况,你可能不希望关闭Python进程并重新打开,或者你无法重新启动Python,这时候就需要实现实时修改代码实时生效,而不用重新启动Python 在我的需求下,这个功能非常重 ...