广义“理解”已经实现

在最新的人工智能系统中,我们经常可以观察到一种类似“理解”的能力。这种广义的“理解”能力,主要建立在两个基础之上:海量信息的记忆与搜索。

以著名的AlphaGo为例,它通过存储和搜索大量围棋对弈的棋谱再结合特定的搜索决策模型,逐步“理解”围棋这一游戏的内在规律,并在与李世石九段的比赛中成功取胜。可见,通过大规模记忆与高效搜索,人工智能已经初步获得了某种类型任务的“理解”能力。

并且在信息记忆与检索这些能力上,人工智能系统已经远超过人脑。以GPT-3语言模型为例,其拥有1750亿个参数,相当于数百亿条对话语料的记忆能力,远非人类大脑可以匹敌。在这些广义“理解”的层面,我们可以说人工智能已然取得了巨大的进步。

狭义“理解”正在进行

然而,“理解”这个词在人类语言中所表示的内涵,显然远不止于记忆与搜索这些能力。我们还需要一个更严格的“理解”定义。

有时候我们会说一个人“真正的理解”了某个知识。因为即使一个人能够记忆大量知识,但如果无法运用这些知识解决实际问题,我们仍然有可能不会说他“理解”了这些知识。

在这样的狭义“理解”定义下,我们需要检验人工智能在知识运用方面的能力。事实上,在信息处理领域人工智能已经在许多场景中替代了人类,展现出强大的知识运用能力。从医疗图像识别到自然语言处理,再到复杂的数据分析,人工智能技术已经能够基于所学知识,解决各类实际问题。

然而主要的瓶颈,仍然在于人工智能与物理世界的交互。受限于机器人技术与传感器的发展程度,当与复杂多变的物理世界产生交互时,人工智能仍面临巨大挑战。这成为其表现执行能力或狭义“理解”能力的主要障碍。

知识的执行体与被执行体

对于知识的“理解”,我们通常默认知识的学习与运用发生在同一主体之上。但从人工智能系统的运行来看,人类或许会得到更多的理解。

我们可以将人工智能系统比作计算机中的软硬件。软件蕴含了知识与算法逻辑,但没有硬件的执行就无法产生智能;而硬件没有软件的赋能,也只是死物一堆。只有软件与硬件的紧密结合,才能产生智能。

以GPT模型为例,预训练模型中的网络权重可看作“硬件”,大量知识则蕴含在这些权重中,可看作“软件”。当输入新问题时,这些“软硬件”联合起来,才产生相关的答案。

类似地,在人类身上,我们积累的知识也可看作“软件”,而人脑神经网络则作为执行这些知识的“硬件”。当我们运用知识解决问题时,是否也是这样的软硬件协同作用的结果?

如果是这样,我们习以为常的“理解”,或许只是大脑神经网络对知识的一种“执行”而已。知识与运用的主体并不完全重合,“理解”这一概念也许需要重新审视。人类很有可能只是在利用自己的大脑,反复执行自己被输入的各种知识。知识是一个抽象概念,被记录在大脑中的只是知识的一种物理映射结果而不是知识本身。知识被执行了,大脑中的知识物理映射被读取了。人类是一个执行体,人类拥有知识的物理映射,做为一个个体的人类,真的拥有知识吗?载体的消失,对知识毫无影响。

从“理解”进入“思维”

在记忆、搜索和知识运用等方面,我们逐渐发现了人工智能与人类认知之间的一些异同。

无论是信息容量还是搜索效率,人工智能系统在这些层面已经取得了压倒性的优势。它们也在越来越多的领域中展现出知识运用和解决问题的能力。这些与人类共享的认知功能日益增多,使得二者界限愈发模糊。

同时,从执行体与被执行体的关系来看,我们也对“理解”这一概念有了更深的思考。这种反思启发我们,也许需要打破原有的框架,重新审视和定义“理解”的内涵。

要深入探讨“理解”这一核心问题,我们还需要触及更高级的认知功能——思维与意识。正是人类特有的自我意识,建立在高度复杂的思维基础之上,使我们有别于其他生命形态。这种高维的抽象思维能力,是人类核心竞争力的所在。

要判断一个体是否“真正理解”,我们需要检验它是否拥有这种高度复杂、难以概括的思维能力。这仍然是人工智能领域的核心挑战所在。探索和对这些独特的人类认知功能进行建模,将决定人工智能发展的方向。

未完待续

人工智能在“理解”这一认知能力的道路上,已经取得了巨大的进步,在信息处理领域已日趋接近人类。但要触及那种高阶的、独特的人类“理解”,进入思维与意识的范畴,人工智能的任务依然繁重。我们还需要深入研究与模拟人类思维本质,这关系到人工智能发展的方向与境界。

摘要

发现AI自我意识:从理解到思维的更多相关文章

  1. R树--理解平面思维

    R树数据结构 备注:参考wiki的内容. 简介 Guttman, A.; “R-trees: a dynamic index structure for spatial searching,” ACM ...

  2. 网上查了点关于windows注册表的知识,发现基本名词没理解好,于是整理这篇笔记(可能个别地方不准确,先这么理解吧),有了这个理解,再去看网上的文章,就差不读了

    打开注册表编辑器,左边窗格中显示的是“注册表项”,右边窗格中显示的是“注册表项的项值” 子项:子项是相对父项而言的,在某一个项(父项)下面出现的项(子项) 值项:一个项可以有一个或多个项值,当前被使用 ...

  3. NLP理解层次 --- 思维导图

  4. 花十分钟,让你变成AI产品经理

    花十分钟,让你变成AI产品经理 https://www.jianshu.com/p/eba6a1ca98a4 先说一下你阅读本文可以得到什么.你能得到AI的理论知识框架:你能学习到如何成为一个AI产品 ...

  5. 打工人都在用的AI工具(第二期)

    更多精彩内容,欢迎关注公众号:数量技术宅,也可添加技术宅个人微信号:sljsz01,与我交流. 上周更新的打工人都在用的AI工具(第一期)收到了小伙伴们的高度好评,于是很多小伙伴们急急忙忙的催更,技术 ...

  6. AI产品经理成长路

    AI产品经理成长路 https://www.jianshu.com/p/4b98314ad3c0 以下都是自己平时知识的一些总结,只是一些个人的愚见,下面出现的公司.书籍.视频.网站都是自己看过体验过 ...

  7. 俞敏洪:未来教育是互联网+ AI +区块链联合颠覆

    “我对面向未来教育领域,内心是有一丝悲哀的.至少在我思考和理解的范围内,互联网和 AI 是不是有可能彻底的改变中国教育现状?我没有想清楚.”10 月 31 日,在鲸媒体举办的以“教育 +AI”为的主题 ...

  8. deeplearning.ai课程学习(1)

    本系列主要是我对吴恩达的deeplearning.ai课程的理解和记录,完整的课程笔记已经有很多了,因此只记录我认为重要的东西和自己的一些理解. 第一门课 神经网络和深度学习(Neural Netwo ...

  9. 这6种思维,学会了你就打败了95%文案!zz

    ​本文笔者为大家讲述了文案高手写文案时最常用的六种思维,这六种思维也都是文案新手容易入的坑. 有的人做了3,5年的文案,还是小白一个.而有的人短短1,2年的时间,却可以成为文案高手. 为什么? 我总结 ...

  10. 深度学习优质学习项目大放送!-AI Studio精选开源项目合集推荐

    近期 在AI Studio上发现了不少优质的开源深度学习项目,从深度学习入门到进阶,涵盖了CV.NLP.生成对抗网络.强化学习多个研究方向,还有最新的动态图,都以NoteBook的方式直接开源出来,并 ...

随机推荐

  1. Mysql高级5-SQL优化

    一.插入数据优化 1.1 批量插入 如果有多条数据需要同时插入,不要每次插入一条,然后分多次插入,因为每执行一次插入的操作,都要进行数据库的连接,多个操作就会连接多次,而一次批量操作只需要连接1次 1 ...

  2. 【入门教程】3202年了,还有人没用stable diffusion画过自己的AI小姐姐吗。

    个人绘画作品: 说明 本文主要是讲一下如何安装.使用整合包,以及介绍画真人图片的大模型(介绍的整合包只提供二次元模型,个人不太感兴趣) 通过最简单的介绍帮助大家快速入门,开始画图,不会深入的进行讲解, ...

  3. [python]使用diagrams绘制架构图

    简介 diagrams是python的一个第三方库,用于实现使用代码绘制架构图. 安装 依赖于 Graphviz,安装diagrams之前需要先安装 Graphviz(下载压缩包后,将bin目录添加到 ...

  4. [db2]数据备份与还原

    前言 备份还原db2数据库一般有两种方式,一种是使用db2 backup + db2 restore,另一种是db2move + db2look.前者备份的数据库文件不能使用后者的方式进行还原. 实例 ...

  5. 知识图谱(Knowledge Graph)根本概念

    目录 知识图谱 定义 基础概念: 知识图谱构建的关键技术 知识图谱的构建 实体命名识别 知识抽取 实体统一 指代消解 知识图谱的存储 RDF和图数据库的主要特点区别 知识图谱能干什么 反欺诈 不一致性 ...

  6. Django+anaconda(spyder)

    一.搭建django虚拟环境 打开anaconda prompt 输入:conda create -n mydjango_env 判断(y/n):y 查看虚拟环境 conda env list *号表 ...

  7. ATtiny88初体验(七):TWI

    ATtiny88初体验(七):TWI TWI模块介绍 ATtiny88的TWI模块兼容Phillips I2C以及SMBus,支持主从模式,支持7bit地址,最大允许128个不同的从机地址.在多主机模 ...

  8. 文心一言 VS 讯飞星火 VS chatgpt (92)-- 算法导论8.3 5题

    五.用go语言,在本节给出的第一个卡片排序算法中,为排序 d 位十进制数,在最坏情况下需要多少轮排序?在最坏情况下,操作员需要记录多少堆卡片? 文心一言: 你提到的第一个卡片排序算法可能是指的基数排序 ...

  9. 路由器与交换机:Access/Trunk,Wan/Lan

    转载请注明出处: 1.交换机与路由器 交换机与路由器的特点: 交换机(Switch): 用于在局域网中传输数据帧 基于MAC地址进行转发和过滤 工作在数据链路层(第二层) 具有多个端口,可以连接多台计 ...

  10. mpi转以太网连接300PLC实现以太网通信配置方法

    西门子S7300PLC连接MPI-ETH-XD1.0实现以太网通信配置方法 产品简介 兴达易控MPI-ETH-XD1.0用于西门子S7-200/SMART S7-200/S7-300/S7-400/西 ...