1.lock锁

# ### 锁 lock
from multiprocessing import Process,Lock
import json,time
# (1) lock的基本语法
"""
上锁和解锁是一对,只上锁不解锁会发生死锁现象(程序发生阻塞,下面的代码不执行了)
互斥锁: 互斥锁是进程之间的互相排斥,谁抢到了资源谁就先使用,后抢到资源的后使用.
"""
"""
# 创建一把锁
lock = Lock()
# 上锁
lock.acquire()
# 执行操作
# 解锁
lock.release()
# lock.acquire() 死锁阻塞.
print("执行程序 .... ")
""" # (2) 模拟12306 抢票软件 # 读取票数,更新票数
def wr_info(sign,dic=None):
if sign == "r":
with open("ticket",mode="r",encoding="utf-8") as fp:
dic = json.load(fp)
return dic
elif sign == "w":
with open("ticket",mode="w",encoding="utf-8") as fp:
json.dump(dic,fp) # 抢票方法
def get_ticket(person):
# 获取数据库中实际数据
dic = wr_info("r") # 模拟网络延迟
time.sleep(0.5) if dic["count"] > 0:
print("%s抢到票了" % (person))
dic["count"] -= 1
# 更新数据库
wr_info("w",dic)
else:
print("%s没有抢到这张票" % (person)) def run(person,lock):
# 读取数据库中的实际票数
dic = wr_info("r")
print("%s 查询票数 : %s" % (person,dic["count"])) # 上锁
lock.acquire()
# 抢票
get_ticket(person)
# 解锁
lock.release() if __name__ == "__main__":
lock = Lock()
lst =["刘思敏7","云超1","张恒2","尉翼麟3","王振4","黎建忠5","刘鑫炜6","李天兆8","魏小林9","李博10"]
for i in lst:
p = Process(target=run,args=(i,lock))
p.start() """
# 总结: 区分同步和异步;
当创建10个进程的时候是异步的.直到查完票数截止;
当执行get_ticket这个方法时候,各个进程之间是同步的;
"""

2.Semaphore信号量

# ### 信号量 Semaphore 本质上就是锁,可以控制上锁的数量
"""
sem = Semaphore(4)
sem.acquire()
# 执行相应的操作
sem.release()
"""
from multiprocessing import Semaphore,Process
import time,random def ktv(person,sem):
sem.acquire()
# 开始唱歌
print("%s进入ktv,正在唱歌" % (person) )
time.sleep(random.randrange(3,7)) # 3 4 5 6
print("%s离开ktv,唱完了" % (person) )
sem.release() if __name__ == "__main__":
sem = Semaphore(4)
for i in range(10):
p = Process(target=ktv,args=("person%s" % (i) , sem))
p.start() """
# 总结:
Semaphore 可以设置上锁的数量
同一时间最多允许几个进程上锁;
创建进程的时候是异步的
在执行任务时候是同步的;
"""

3.Event事件

# ### 事件 (Event)
"""
# 阻塞事件 :
e = Event()生成事件对象e
e.wait()动态给程序加阻塞 ,
程序当中是否加阻塞完全取决于该对象中的is_set() [默认返回值是False]
# 如果是True 不加阻塞
# 如果是False 加阻塞 # 控制这个属性的值
# set()方法 将这个属性的值改成True
# clear()方法 将这个属性的值改成False
# is_set()方法 判断当前的属性是否为True (默认上来是False) Lock Semaphore Event 进程和进程之间的数据彼此隔离,但是可以通过socket互相发消息;
"""
# (1) 基本语法
from multiprocessing import Process,Event # 1
# e = Event()
# print(e.is_set())
# e.wait()
# print("程序运行中... ") # 2
"""
e = Event()
# 将阻塞事件中的值改成True
e.set()
print(e.is_set())
e.wait()
print("程序运行中1... ") # 将阻塞事件中的值改成False
e.clear()
e.wait()
print("程序运行中2... ")
"""
# 3
"""
e = Event()
# 参数: 最多等待时间是5秒,过了5秒之后阻塞放行
e.wait()
print("程序运行中3... ")
""" # (2) 模拟红绿灯效果
import time,random
def traffic_light(e):
print("红灯亮")
while True:
if e.is_set():
# 绿灯状态,亮1秒钟
time.sleep(1)
print("红灯亮")
# 把True => False
e.clear()
else:
# 红灯状态,亮1秒钟
time.sleep(1)
print("绿灯亮")
# 把False => True
e.set() # e = Event()
# traffic_light(e) def car(e,i): if not e.is_set():
# 走到这个分支里面来,一定是红灯状态,车要停
print("car%s 在等待" % (i))
# 加阻塞
e.wait()
print("car%s 通行了" % (i)) """
if __name__ == "__main__":
e = Event()
p1 = Process(target=traffic_light,args=(e,))
p1.start() # 开始创建小车
for i in range(1,21):
time.sleep(random.randrange(0,2)) # 0 1
p2 = Process(target=car,args=(e,i))
p2.start()
"""
# (3) 改造红绿灯 (在跑完小车之后,把红绿灯给我炸了)
if __name__ == "__main__":
lst = []
e = Event()
p1 = Process(target=traffic_light,args=(e,))
# 把红绿灯变成守护进程
p1.daemon = True
p1.start() # 开始创建小车
for i in range(1,21):
time.sleep(random.randrange(0,2)) # 0 1
p2 = Process(target=car,args=(e,i))
p2.start()
lst.append(p2) # 让所有的小车都通过之后,在终止交通灯;
for i in lst:
i.join() print("程序结束 ... ")

4.进程队列Queue

# ### 进程队列
from multiprocessing import Process,Queue
"""先进先出,后进后出"""
import queue # 线程队列
# (1) 基本语法
"""
q = Queue()
# 1.put 往队列中存值
q.put(111)
q.put(222)
q.put(333)
# 2.get 从队列中取值
res = q.get()
print(res)
res = q.get()
print(res)
res = q.get()
print(res) # 3.队列里面没数据了,在调用get会发生阻塞
# res = q.get()
# print(res)
"""
# 4.get_nowait 存在兼容性问题(windows好用 linux不好用 不推荐使用)
"""
res = q.get_nowait()
print(res) # 队列问题
try:
res = q.get_nowait()
print(res)
except queue.Empty:
pass
""" # (2) 可以限定Queue队列的长度
"""
q1 = Queue(3)
q1.put(1)
q1.put(2)
q1.put(3)
# 超出了队列的长度,会发生阻塞
# q1.put(4)
# 如果列表满了,还往里面添加数据会直接报错.
q1.put_nowait(4)
""" # (3)进程之间通过队列交换数据
def func(q2):
# 2.子进程取数据
res = q2.get()
print(res)
# 3.子进程存数据
q2.put("刘思敏") if __name__ == "__main__":
q2 = Queue()
p = Process(target=func,args=(q2,))
p.start() # 1.主进程添加数据
q2.put("王振") # 为了等待子进程把数据塞到队列中,在获取,要加一个join
p.join() # 2.主进程获取数据
res = q2.get()
print("主程序执行结束:值为{}".format(res))

5.生产者消费者模型

# ### 生产者和消费者模型
"""
# 爬虫例子:
1号进程负责抓取页面中的内容放到队列里
2号进程负责把内容取出来,配合正则表达式,扣取关键字 1号进程可以理解成生产者
2号进程可以理解成消费者 相对理想的生产者和消费者模型:
追求彼此的速度相对均匀 从程序上来说:
生产者负责存储数据(put)
消费者负责获取数据(get)
""" # (1)基本模型
from multiprocessing import Process,Queue
import random,time # 消费者模型
def consumer(q,name):
while True:
food = q.get()
time.sleep(random.uniform(0.1,1))
print("%s 吃了一个%s" % (name,food)) # 生产者模型
def producer(q,name,food):
for i in range(5):
time.sleep(random.uniform(0.1,1))
print("%s 生产了 %s%s" % (name,food,i))
q.put(food+str(i)) if __name__ == "__main__":
q = Queue()
# 消费者1
p1 = Process(target=consumer,args=(q,"张恒"))
p1.start() # 生产者1
p2 = Process(target=producer,args=(q,"尉翼麟","黄金"))
p2.start() # (2)优化模型 # 消费者模型
def consumer(q,name):
while True:
food = q.get()
if food is None:
break
time.sleep(random.uniform(0.1,1))
print("%s 吃了一个%s" % (name,food)) # 生产者模型
def producer(q,name,food):
for i in range(5):
time.sleep(random.uniform(0.1,1))
print("%s 生产了 %s%s" % (name,food,i))
q.put(food+str(i)) if __name__ == "__main__":
q = Queue()
# 消费者1
p1 = Process(target=consumer,args=(q,"张恒"))
p1.start()
# 消费者2
a2 = Process(target=consumer,args=(q,"云超"))
a2.start() # 生产者1
p2 = Process(target=producer,args=(q,"尉翼麟","黄金"))
p2.start() # 生产者2
b2 = Process(target=producer,args=(q,"刘思敏","钻石"))
b2.start() # 在生产完所有的数据之后,在队列的末尾塞入一个None
p2.join()
b2.join()
# 消费者模型如果获取的是None,代表停止消费
q.put(None)
q.put(None)

6.JoinableQueue

# ### JoinableQueue
"""
put 存储
get 获取
task_done 队列计数减1
join 阻塞 task_done 配合 join 一起使用
[1,2,3,4,5]
队列计数5
put 一次 每存放一个值,队列计数器加1
get 一次 通过task_done让队列计数器减1
join 函数,会根据队列中的计数器来判定是阻塞还是放行
如果计数器变量是0,意味着放行,其他情况阻塞;
""" from multiprocessing import Process,JoinableQueue
# (1) 基本使用
"""
jq = JoinableQueue()
# put 会让队列计数器+1
jq.put("a")
print(jq.get())
# 通过task_done,让队列计数器-1
jq.task_done()
# 只有队列计数器是0的时,才会放行
jq.join() # 队列.join
print("finish")
""" # (2) 改造生产者消费者模型
import random,time # 消费者模型
def consumer(q,name):
while True:
food = q.get()
time.sleep(random.uniform(0.1,1))
print("%s 吃了一个%s" % (name,food))
q.task_done() # 生产者模型
def producer(q,name,food):
for i in range(5):
time.sleep(random.uniform(0.1,1))
print("%s 生产了 %s%s" % (name,food,i))
q.put(food+str(i)) if __name__ == "__main__":
q = JoinableQueue()
# 消费者1
p1 = Process(target=consumer,args=(q,"张恒"))
p1.daemon = True
p1.start() # 生产者1
p2 = Process(target=producer,args=(q,"尉翼麟","黄金"))
p2.start() # 把生产者所有的数据都装载到队列中
p2.join() # 当队列计数器减到0的时候,会立刻放行
# 必须等待消费者模型中所有的数据都task_done之后,变成0了就代表消费结束.
q.join() print("程序结束....")

lock锁,Semaphore信号量,Event事件,进程队列Queue,生产者消费者模型,JoinableQueue---day31的更多相关文章

  1. Python之路(第三十八篇) 并发编程:进程同步锁/互斥锁、信号量、事件、队列、生产者消费者模型

    一.进程锁(同步锁/互斥锁) 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的, 而共享带来的是竞争,竞争带来的结果就是错乱,如何控制,就是加锁处理. 例 ...

  2. 互斥锁 线程理论 GIL全局解释器锁 死锁现象 信号量 event事件 进程池与线程池 协程实现并发

    目录 互斥锁 multiprocessing Lock类 锁的种类 线程理论 进程和线程对比 开线程的两种方式(类似进程) 方式1 使用Thread()创建线程对象 方式2 重写Thread类run方 ...

  3. [并发编程 - socketserver模块实现并发、[进程查看父子进程pid、僵尸进程、孤儿进程、守护进程、互斥锁、队列、生产者消费者模型]

    [并发编程 - socketserver模块实现并发.[进程查看父子进程pid.僵尸进程.孤儿进程.守护进程.互斥锁.队列.生产者消费者模型] socketserver模块实现并发 基于tcp的套接字 ...

  4. Day034--Python--锁, 信号量, 事件, 队列, 生产者消费者模型, joinableQueue

    进程同步: 1. 锁 (重点)    锁通常被用来实现对共享资源的同步访问.为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁, ...

  5. 进击的Python【第九章】:paramiko模块、线程与进程、各种线程锁、queue队列、生产者消费者模型

    一.paramiko模块 他是什么东西? paramiko模块是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接. 先来个实例: import param ...

  6. python_way ,day11 线程,怎么写一个多线程?,队列,生产者消费者模型,线程锁,缓存(memcache,redis)

    python11 1.多线程原理 2.怎么写一个多线程? 3.队列 4.生产者消费者模型 5.线程锁 6.缓存 memcache redis 多线程原理 def f1(arg) print(arg) ...

  7. 8.12 day31 进程间通信 Queue队列使用 生产者消费者模型 线程理论 创建及对象属性方法 线程互斥锁 守护线程

    进程补充 进程通信 要想实现进程间通信,可以用管道或者队列 队列比管道更好用(队列自带管道和锁) 管道和队列的共同特点:数据只有一份,取完就没了 无法重复获取用一份数据 队列特点:先进先出 堆栈特点: ...

  8. python并发编程-进程间通信-Queue队列使用-生产者消费者模型-线程理论-创建及对象属性方法-线程互斥锁-守护线程-02

    目录 进程补充 进程通信前言 Queue队列的基本使用 通过Queue队列实现进程间通信(IPC机制) 生产者消费者模型 以做包子买包子为例实现当包子卖完了停止消费行为 线程 什么是线程 为什么要有线 ...

  9. (并发编程)进程IPC,生产者消费者模型,守护进程补充

    一.IPC(进程间通信)机制进程之间通信必须找到一种介质,该介质必须满足1.是所有进程共享的2.必须是内存空间附加:帮我们自动处理好锁的问题 a.from multiprocessing import ...

  10. 守护进程,进程安全,IPC进程间通讯,生产者消费者模型

    1.守护进程(了解)2.进程安全(*****) 互斥锁 抢票案例3.IPC进程间通讯 manager queue(*****)4.生产者消费者模型 守护进程 指的也是一个进程,可以守护着另一个进程 一 ...

随机推荐

  1. [转帖]iozone磁盘读写测试工具的使用以及命令详解、下载(网站最详细讲解步骤)

    一.iozone简介 iozone是一款开源工具,用来测试文件系统的读写性能,也可以进行测试磁盘读写性能. 二.下载 方式一:网站下载http://www.iozone.org/ 方式二:个人网盘存放 ...

  2. [转帖]012 Linux 搞懂用户权限升级 (sudo 和 su),包学会

    https://my.oschina.net/u/3113381/blog/5431540 Linux 系统中 root 账号通常用于系统的管理和维护,对操作系统的所有资源具有访问控制权限,当一个普通 ...

  3. 全球 IPv4 耗尽,下个月开始收费!

    哈喽大家好,我是咸鱼 IPv4(Internet Protocol version 4)是互联网上使用最广泛的网络层协议之一,于1981年在 RFC 791 中发布,它定义了 32 位的IP地址结构和 ...

  4. HTMl插入视频背景

    插入视频背景一段简单的css即可 首先定义HTML的video标签 <video src="视频路径" class="bjimg" autoplay lo ...

  5. 【Mysql】复合主键和联合主键的区别

    复合主键: create table index_test ( a int not null, b int not null, c int not null, d int null, primary ...

  6. PostFix+Dovecot 部署邮件系统

    Postfix 是一种电子邮件服务器是一个开放源代码的软件. Postfix 是MTA邮件传输代理软件.是sendmail提供替代品的一个尝试,在Internet世界中,大部分的电子邮件都是通过sen ...

  7. HT UI 5.0,前端组件图扑是认真的

    为顺应数字时代的不断发展,图扑 HT UI 5.0 在原有功能强大的界面组件库的基础上进行了全面升级,融入了更先进的技术.创新的设计理念以及更加智能的功能.HT UI 5.0 使用户体验更为直观.个性 ...

  8. 我管你什么okr还是kpi,PPT轻松交给你

    word一键转ppt 通过[文件]→[选项]→[快速访问工具栏],选择[不在功能区中的命令],找到[发送到Microsoft PowerPoint ],单击[添加]后再[确定] 调出功能按钮后,就可以 ...

  9. C++ GDAL提取多时相遥感影像中像素随时间变化的数值数组

      本文介绍基于C++语言GDAL库,批量读取大量栅格遥感影像文件,并生成各像元数值的时间序列数组的方法.   首先,我们来明确一下本文所需实现的需求.现在有一个文件夹,其中包含了很多不同格式的文件, ...

  10. YOLO数据集划分(测试集和验证集)

    在目标检测任务中,数据集的划分通常分为训练集和验证集,以便在训练模型时评估模型的性能.这个过程对于有效训练和评估目标检测模型非常重要.下面是划分目标检测数据集的一般步骤:`` 数据集组织: 确保你的数 ...