[toc]
CF293B Distinct Paths=JZOJ 4012
CF261E Maxim and Calculator=JZOJ 4010

JZOJ 2292 PPMM

题目

满足队列出入队,还要全部取反或者输出队列最大数


分析

首先全部取反也就是输出队列最小值的相反数

所以最理想的方法就是单调队列

也可以用带$log$的数据结构维护,但是容易被卡掉,

这里用树状数组,但是树状数组不满足删除,所以就把下标旋转,跑的还是挺快的


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=2000011,inf=2147483647;
int n,cur,now,op,ges,cmin[N],cmax[N];
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void Min(int &x,int y){if (x>y) x=y;}
inline void Max(int &x,int y){if (x<y) x=y;}
inline void add(int x,int y){for (;x<=now;x+=-x&x) Min(cmin[x],y),Max(cmax[x],y);}
inline signed qmin(int x){
rr int ans=inf;
for (;x;x-=-x&x) Min(ans,cmin[x]);
return ans;
}
inline signed qmax(int x){
rr int ans=-inf;
for (;x;x-=-x&x) Max(ans,cmax[x]);
return ans;
}
inline void Pop(){if (cur<=now) --now;}
inline void Push(int x){add(--cur,x*op);}
inline void Fan(){if (cur<=now) op*=-1,ges^=1;}
inline void Gax(){
if (cur<=now){
rr int ans=op*(ges?qmin(now):qmax(now));
if (ans<0) putchar('-'),print(-ans);
else print(ans);
putchar(10);
}
}
signed main(){
n=iut(),cur=n+1,now=n,op=1;
for (rr int i=1;i<=n;++i) cmin[i]=inf,cmax[i]=-inf;
for (rr int i=1;i<=n;++i){
rr char c=getchar(); rr bool flag=0;
while (c!='P'&&c!='M') c=getchar();
switch (c=getchar()){
case 'O':Pop(),flag=1;break;
case 'U':Push(iut()); break;
case 'I':Fan(); break;
case 'A':Gax(); break;
}
if (flag) c=getchar();
}
return 0;
}

JZOJ 4012 Distinct Paths

题目

有一个$n*m$的木板,一些块已经被涂上给出的$k$种颜色中的一种。

你需要把每个没涂色的块涂色使得从左上角到右下角的每条路径都不会经过两个颜色一样的块。路径只能向右或向下走。


分析

首先这道题就是$n+m-1>k$肯定不可能的,所以其实就是搜索,但是要有技巧的剪枝


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int mod=1000000007;
int g[11][11],a[11][11];
int cnt[11],xo[1024],n,m,k;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline signed dfs(int x,int y){
if (y==m+1) ++x,y=1;
if (x==n+1) return 1;
rr int S=g[x-1][y]|g[x][y-1],ans=0,sing=-1;
if (n+m-x-y+1>k-xo[S]) return 0;
for (rr int i=0;i<k;++i)
if (!(S&(1<<i))&&((!a[x][y])||(a[x][y]==i+1))){
++cnt[i+1],g[x][y]=S|(1<<i);
if (cnt[i+1]==1){
if (sing==-1) sing=dfs(x,y+1);
ans=mo(ans,sing);
}else ans=mo(ans,dfs(x,y+1));
--cnt[i+1];
}
return ans;
}
signed main(){
for (rr int i=1;i<1024;++i) xo[i]=xo[i&(i-1)]+1;
n=iut(),m=iut(),k=iut();
if (n+m>k+1) return !putchar(48);
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=m;++j) ++cnt[a[i][j]=iut()];
return !printf("%d",dfs(1,1));
}

JZOJ 4010 Philips and Calculator

题目

可以用$x$次操作后选取$y$次$1\sim x$的可以相同的数相乘,但要保证$x+y\leq p$,问$[l\sim r]$有多少数能够这样被得到


分析

首先$x<p$所以可以把$2\sim p-1$的质数预处理,然后用这些数构造$1\sim r$的能够被乘出来的数进行dp

赛时想到应该是质因数个数+最大质因数,然而并不是,就以$64=26=43=8^2$为例,选择$4+3=7$答案更小

所以就$dp$,设$dp[n]$表示$n$所需要表示的最小步数,那么$dp[n]=\min{dp[n/i]+1}$,时间复杂度$O(pn)$,还要注意优化


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int prime[25]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97};
const int N=3000011; int l,r,p,ans,tot,bac,dp[N],a[N]; bool v[N];
inline void dfs(int dep,int now){
a[++tot]=now;
for (rr int i=dep;i<=bac;++i)
if (now<=r/prime[i])
dfs(i,now*prime[i]);
}
signed main(){
scanf("%d%d%d",&l,&r,&p);
if (p==1||p==2) return !putchar(48);
for (bac=24;prime[bac]>=p;--bac);
dfs(0,1),sort(a+1,a+1+tot),v[1]=1;
for (rr int i=2;i<=tot;++i) dp[i]=1e9;
for (rr int i=2;i<=p;++i)
for (rr int k=1,j=i;k<=tot;++k){
if (dp[k]+i+1>p) continue;
for (;j<=tot&&a[j]!=a[k]*i;++j);
if (j>tot) break;
if (dp[j]>dp[k]+1) dp[j]=dp[k]+1;
if (a[j]<l||v[j]||dp[j]+i>p) continue;
++ans,v[j]=1;
}
return !printf("%d",ans);
}

2020.02.05【NOIP提高组】模拟A 组的更多相关文章

  1. 纪中集训2020.02.05【NOIP提高组】模拟B 组总结反思——【佛山市选2010】组合数计算,生成字符串 PPMM

    目录 JZOJ2290. [佛山市选2010]组合数计算 比赛时 之后 JZOJ2291. [佛山市选2010]生成字符串 比赛时 之后 JZOJ2292. PPMM 比赛时 之后 JZOJ2290. ...

  2. 【纪中集训】2019.08.02【NOIP提高组】模拟 A 组TJ

    \(\newcommand{\RNum}[1]{\uppercase\expandafter{\romannumeral #1\relax}}\) T1 一道可以暴力撵标算的题-- Descripti ...

  3. JZOJ5857 【NOIP提高组模拟A组2018.9.8】没有上司的舞会

    题目 Description "那么真的有果尔德施坦因这样一个人?"他问道. "是啊,有这样一个人,他还活着.至于在哪里,我就不知道了." "那么那个 ...

  4. [jzoj 5770]【2018提高组模拟A组8.6】可爱精灵宝贝 (区间dp)

    传送门 Description Branimirko是一个对可爱精灵宝贝十分痴迷的玩家.最近,他闲得没事组织了一场捉精灵的游戏.游戏在一条街道上举行,街道上一侧有一排房子,从左到右房子标号由1到n. ...

  5. 2020牛客NOIP赛前集训营-普及组(第二场)A-面试

    面 试 面试 面试 题目描述 牛牛内推了好多人去牛客网参加面试,面试总共分四轮,每轮的面试官都会对面试者的发挥进行评分.评分有 A B C D 四种.如果面试者在四轮中有一次发挥被评为 D,或者两次发 ...

  6. 2020牛客NOIP赛前集训营-普及组(第二场) 题解

    目录 T1 面试 描述 题目描述 输入描述: 输出描述: 题解 代码 T2 纸牌游戏 描述 题目描述 输入描述: 输出描述: 题解 代码 T3 涨薪 描述 题目描述 输入描述: 输出描述: 题解 代码 ...

  7. JZOJ 2020.02.01【NOIP提高组】模拟A 组

    2020.02.01[NOIP提高组]模拟A 组 二月份第一场比赛 闲话 惨烈啊! 50+30+0=80分 一题都没A 唉 最高150? \(zzh\) 暴虐A组 总结: 若干新东西 \(T1\) 我 ...

  8. JZOJ 2020.02.16【NOIP提高组】模拟A 组

    2020.02.16[NOIP提高组]模拟A 组 呼呼呼呼呼呼呼呼 今天暴力分可真多啊 第一次 \(A\) 组进前 \(5\) ! 呼呼呼呼呼呼呼呼 总有人虐场,总有人在场中被虐······ 总结 3 ...

  9. JZOJ 2020.01.11【NOIP提高组】模拟B组

    2020.01.11[NOIP提高组]模拟B组 今天的题是不是和 \(C\) 组放错了? 呵呵 然,却只有 \(300\) 分 首先,\(T4\) 看错题了 后,一时想不到正解 讨论区,一看,三个字- ...

  10. SX【2020.01.09】NOIP提高组模拟赛(day1)

    [2020.01.09]NOIP提高组模拟赛(day1) 这次考得不理想,只做了前两题,后两题没时间做,说明做题速度偏慢. source : 100 + 20 + 0 + 0 = 120 rank7 ...

随机推荐

  1. zlib开发笔记(一):zlib库介绍、编译和工程模板

    前言   Qt使用一些压缩解压功能,介绍过libzip库编译,本篇说明zlib库.   zlib库   zlib被设计为一个免费的,通用的,法律上不受限制的-即不受任何专利保护的无损数据压缩库,几乎可 ...

  2. 【LeetCode贪心#10】划分字母区间(有涉及hash数组的使用)

    划分字母区间 力扣题目链接(opens new window) 字符串 S 由小写字母组成.我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中.返回一个表示每个字符串片段的长度的列表 ...

  3. 【Azure 应用服务】如何定期自动重启 Azure App Service Plan(应用服务计划)

    问题描述 如何定期自动重启 Azure App Service Plan(应用服务计划)? 因一个App Service Plan 下包含多个应用服务,如果能统一通过应用服务计划来重启所有的应用,则有 ...

  4. Nebula Graph 在众安保险的图实践

    本文首发于 Nebula Graph Community 公众号 互联网金融的借贷同传统信贷业务有所区别,相较于传统信贷业务,互联网金融具有响应快.数据规模大.风险高等特点.众安保险主要业务是做信用保 ...

  5. kafka 工作流程及文件存储机制

    1.kafka的数据存储      文件存储格式: .log 和 .index Kafka 中消息是以 topic 进行分类的, 生产者生产消息,消费者消费消息,都是面向 topic的. topic ...

  6. 9、mysql的并发参数调整

    从实现上来说,MySQL Server 是多线程结构,包括后台线程和客户服务线程.多线程可以有效利用服务器资源,提高数据库的并发性能.在Mysql中,控制并发连接和线程的主要参数包括 max_conn ...

  7. python Ai 应用开发基础训练,字符串,字典,文件

    --------------------------------------    编程能是大模型应用的天花板............................................. ...

  8. axios 报 登出跨域 withCredentials: false,

    withCredentials: false, 默认值虽然是false,但是之前包装的时候设置成true了,所以最后再设置回来

  9. 逆向通达信Level-2 续五 (调试窗口层次结构)

    演示 hierarchy, checkCWnd命令. 窗口层次结构向上追溯寻根.自动识别是否为CWnd对象,并且自动搜索对象指针. 窗口层次结构内容包括: 1.窗口类名 2.窗口实现所在模块 3.窗口 ...

  10. 记一次maven不下来的经历

    起因:自己手动搭建个项目,参考公司项目使用了很多依赖,但是当自己maven时候发现一个依赖怎么也down不下来,就此展开了一番折腾 这个依赖叫 <dependency> <group ...