时间限制:0.25s

空间限制:4M

题意:

在n(n<=400)个点的图中,找到并输出两条不想交的最短路。不存在输出“No sulotion”;


Solution:

最小费用最大流

建图与poj 2135 一样,添加S到1的流量为2权为0,n到T的流量为2权为0的边,其它边的流量为1,权为路径长度.

但是这道题麻烦不在要输出最短路,而在仅仅4M的内存上。

由于只有4M,我们最多存上400*400条边.但是图却是一个无向图,朴素的想法是存上400*400*2条边,但是这里内存不够.

所以我们首先要确定记录一条边我们是否使用过,如果使用了使用的是那个方向.

相应的在找到增广路后,把正向反向边的流量改变,把反向边的费用变成负值.

最后按照我们标记过的边dfs,并输出就好了.

总的来说是一道足以加深对最小费用最大流的理解的不错的题!

参考代码:

/*
最小费用最大流算法:
思路:
以费用为权做最短路算法。
*/
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#include <cmath>
using namespace std;
const int INF = , Maxn = 0x3f3f3f3f; struct node {
int u, v, t, c, next;
} edge[INF * INF];
int head[INF], nCnt = ;
int G[INF][INF];
void addEdge (int u, int v, int traffic, int cost) {
edge[++nCnt].v = v, edge[nCnt].u = u, edge[nCnt].t = traffic, edge[nCnt].c = cost;
edge[nCnt].next = head[u], head[u] = nCnt;
edge[++nCnt].v = u, edge[nCnt].u = v, edge[nCnt].t = traffic, edge[nCnt].c = cost;
edge[nCnt].next = head[v], head[v] = nCnt;
}
int max_flow, min_cost;
int n, m, SS, ST, S, T, min_dis = Maxn;
int SPFA() {
queue<int> ql;
int vis[INF] = {}, dis[INF], pre[INF] = {};
ql.push (SS);
memset (dis, 0x3f, sizeof dis);
vis[SS] = , dis[SS] = ;
while (!ql.empty() ) {
int x = ql.front(); ql.pop();
for (int i = head[x]; i != ; i = edge[i].next) {
if (edge[i].t == ) continue;
int v = edge[i].v, c = edge[i].c;
if (dis[v] > dis[x] + c) {
dis[v] = dis[x] + c;
pre[v] = i;
if (!vis[v])
ql.push (v), vis[v] = ;
}
}
vis[x] = ;
}
min_dis = min (min_dis, dis[ST]);
if (dis[ST] == Maxn) return ;
else {
min_cost += dis[ST];
int k = pre[ST];
int cur_flow = Maxn;
while (k) {
if (cur_flow > edge[k].t) cur_flow = edge[k].t;
G[edge[k].u][edge[k].v] = G[edge[k].v][edge[k].u] = ^ G[edge[k].v][edge[k].u];
edge[k].t = edge[k ^ ].t, edge[k].c = abs (edge[k].c);
edge[k ^ ].t = , edge[k ^ ].c = -abs (edge[k ^ ].c);
k = pre[edge[k].u];
}
max_flow += cur_flow;
k = pre[ST];
while (k) {
edge[k].t -= cur_flow, edge[k ^ ].t += cur_flow;
k = pre[edge[k].u];
}
return ;
}
}
void dfs (int x) {
for (int i = head[x]; i != ; i = edge[i].next) {
if (G[x][edge[i].v] && edge[i].t > && edge[i].v < T) {
edge[i].t = ;
dfs (edge[i].v);
break;
}
}
if (x == S) printf ("%d", x);
else
printf (" %d", x);
}
int MCMF() {
while (SPFA() );
if (max_flow == && min_cost == * min_dis) {
dfs (T);
putchar ();
dfs (T);
}
else
puts ("No solution");
}
void build() {
scanf ("%d %d", &n, &m);
int x, y, z;
for (int i = ; i <= m; i++) {
scanf ("%d %d %d", &x, &y, &z);
addEdge (x, y, , z);
}
S = , T = n;
SS = n + , ST = n + ;
addEdge (SS, S, , ), addEdge (T, ST, , );
}
int main() {
build();
MCMF();
return ;
}

SGU 185.Two shortest (最小费用最大流)的更多相关文章

  1. SGU 185 Two shortest 最短路+最大流

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=21068 Yesterday Vasya and Petya qua ...

  2. TZOJ 4712 Double Shortest Paths(最小费用最大流)

    描述 Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting ...

  3. CSU 1506 Problem D: Double Shortest Paths(最小费用最大流)

    题意:2个人从1走到n,假设一条路第一次走则是价值di,假设第二次还走这条路则须要价值di+ai,要你输出2个人到达终点的最小价值! 太水了!一条边建2次就OK了.第一次价值为di,第二次为ai+di ...

  4. POJ 2516 最小费用最大流

    每一种货物都是独立的,分成k次最小费用最大流即可! 1: /** 2: 因为e ==0 所以 pe[v] pe[v]^1 是两条相对应的边 3: E[pe[v]].c -= aug; E[pe[v]^ ...

  5. 网络流(最小费用最大流):POJ 2135 Farm Tour

    Farm Tour Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: ...

  6. UVa 10806 Dijkstra,Dijkstra(最小费用最大流)

    裸的费用流.往返就相当于从起点走两条路到终点. 按题意建图,将距离设为费用,流量设为1.然后增加2个点,一个连向节点1,流量=2,费用=0;结点n连一条同样的弧,然后求解最小费用最大流.当且仅当最大流 ...

  7. TZOJ 1513 Farm Tour(最小费用最大流)

    描述 When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 &l ...

  8. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  9. POJ 2135 Farm Tour(最小费用最大流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

随机推荐

  1. [XenServer] XenServer修改IP 以及 root密码

     A.修改IP以及DNS 1. root用户登录console 2.输入命令获得UUID xe pif-list 3.利用UUID查看之前的IP,注意替换下面的1111111111 xe pif-pa ...

  2. Java虚拟机基础知识

    写在前面 之前老大让做一些外包面试,我的问题很简单: 介绍一下工作中解决过比较有意思的问题. HashMap使用中需要注意的点. 第一个问题主要是想了解一下对方项目经验的含金量,第二个问题则是测试下是 ...

  3. Inheritance - SGU 129(线段与多边形相交的长度)

    题目大意:给一个凸多边形(点不是按顺序给的),然后计算给出的线段在这个凸多边形里面的长度,如果在边界不计算. 分析:WA2..WA3...WA4..WA11...WA的无话可说,总之细节一定考虑清楚, ...

  4. 你能在windows上创建一个叫做AUX的文件夹吗?

    Windows的文件名不能有如下这些特殊符号,这个大家都比较熟悉了. < (less than) > (greater than) : (colon) " (double quo ...

  5. 【设计模式 - 4】之原型模式(Prototype)

    1      模式简介 原型模式的定义:通过复制一个现有的对象(原型)来得到一个相似的对象. 原型模式的UML图如下图所示: 从上图中可以看到,所有的对象实体类都是继承自一个Prototype的父类, ...

  6. 【设计模式 - 8】之组合模式(Composite)

    1      模式简介 组合模式可以将对象以树形结构来表现"整体/部分"层次结构,让客户以一致的方式处理个别形象以及对象组合. 组合模式让我们能用树形方式创建对象的结构,树里面包含 ...

  7. 【Android - MD】之TabLayout的使用

    TabLayout是Android 5.0新特性--Material Design中的一个控件,是一个标签页的导航条,常结合ViewPager完成页面导航. 和其他MD控件一样,使用TabLayout ...

  8. 构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(37)-文章发布系统④-百万级数据和千万级数据简单测试

    原文:构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(37)-文章发布系统④-百万级数据和千万级数据简单测试 系列目录 我想测试EF在一百万条数据下的显示时间! ...

  9. IIS7 和IIS8.0 HTTP 错误 500.19 - Internal Server Error 问题的解决方式

    百度了好久,没找到解决这个问题确切的答案,我也知道肯定是权限的问题,当然,经过一番尝试之后,最终攻克了,解决之道例如以下(个人方法,能够一试): 1.找到你的配置文件所在的目录,我的是 E:\源代码\ ...

  10. Java语言基础(九)

    Java语言基础(九) 一.自增运算(++) 自减运算(--) i++ 就是将i+1再赋给 i i-- 是将i-1再赋给 i 对变量i,j来说,i++ 或++i 这里没什么区别,都是将i的值加1后,再 ...