时间限制:0.25s

空间限制:4M

题意:

在n(n<=400)个点的图中,找到并输出两条不想交的最短路。不存在输出“No sulotion”;


Solution:

最小费用最大流

建图与poj 2135 一样,添加S到1的流量为2权为0,n到T的流量为2权为0的边,其它边的流量为1,权为路径长度.

但是这道题麻烦不在要输出最短路,而在仅仅4M的内存上。

由于只有4M,我们最多存上400*400条边.但是图却是一个无向图,朴素的想法是存上400*400*2条边,但是这里内存不够.

所以我们首先要确定记录一条边我们是否使用过,如果使用了使用的是那个方向.

相应的在找到增广路后,把正向反向边的流量改变,把反向边的费用变成负值.

最后按照我们标记过的边dfs,并输出就好了.

总的来说是一道足以加深对最小费用最大流的理解的不错的题!

参考代码:

/*
最小费用最大流算法:
思路:
以费用为权做最短路算法。
*/
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#include <cmath>
using namespace std;
const int INF = , Maxn = 0x3f3f3f3f; struct node {
int u, v, t, c, next;
} edge[INF * INF];
int head[INF], nCnt = ;
int G[INF][INF];
void addEdge (int u, int v, int traffic, int cost) {
edge[++nCnt].v = v, edge[nCnt].u = u, edge[nCnt].t = traffic, edge[nCnt].c = cost;
edge[nCnt].next = head[u], head[u] = nCnt;
edge[++nCnt].v = u, edge[nCnt].u = v, edge[nCnt].t = traffic, edge[nCnt].c = cost;
edge[nCnt].next = head[v], head[v] = nCnt;
}
int max_flow, min_cost;
int n, m, SS, ST, S, T, min_dis = Maxn;
int SPFA() {
queue<int> ql;
int vis[INF] = {}, dis[INF], pre[INF] = {};
ql.push (SS);
memset (dis, 0x3f, sizeof dis);
vis[SS] = , dis[SS] = ;
while (!ql.empty() ) {
int x = ql.front(); ql.pop();
for (int i = head[x]; i != ; i = edge[i].next) {
if (edge[i].t == ) continue;
int v = edge[i].v, c = edge[i].c;
if (dis[v] > dis[x] + c) {
dis[v] = dis[x] + c;
pre[v] = i;
if (!vis[v])
ql.push (v), vis[v] = ;
}
}
vis[x] = ;
}
min_dis = min (min_dis, dis[ST]);
if (dis[ST] == Maxn) return ;
else {
min_cost += dis[ST];
int k = pre[ST];
int cur_flow = Maxn;
while (k) {
if (cur_flow > edge[k].t) cur_flow = edge[k].t;
G[edge[k].u][edge[k].v] = G[edge[k].v][edge[k].u] = ^ G[edge[k].v][edge[k].u];
edge[k].t = edge[k ^ ].t, edge[k].c = abs (edge[k].c);
edge[k ^ ].t = , edge[k ^ ].c = -abs (edge[k ^ ].c);
k = pre[edge[k].u];
}
max_flow += cur_flow;
k = pre[ST];
while (k) {
edge[k].t -= cur_flow, edge[k ^ ].t += cur_flow;
k = pre[edge[k].u];
}
return ;
}
}
void dfs (int x) {
for (int i = head[x]; i != ; i = edge[i].next) {
if (G[x][edge[i].v] && edge[i].t > && edge[i].v < T) {
edge[i].t = ;
dfs (edge[i].v);
break;
}
}
if (x == S) printf ("%d", x);
else
printf (" %d", x);
}
int MCMF() {
while (SPFA() );
if (max_flow == && min_cost == * min_dis) {
dfs (T);
putchar ();
dfs (T);
}
else
puts ("No solution");
}
void build() {
scanf ("%d %d", &n, &m);
int x, y, z;
for (int i = ; i <= m; i++) {
scanf ("%d %d %d", &x, &y, &z);
addEdge (x, y, , z);
}
S = , T = n;
SS = n + , ST = n + ;
addEdge (SS, S, , ), addEdge (T, ST, , );
}
int main() {
build();
MCMF();
return ;
}

SGU 185.Two shortest (最小费用最大流)的更多相关文章

  1. SGU 185 Two shortest 最短路+最大流

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=21068 Yesterday Vasya and Petya qua ...

  2. TZOJ 4712 Double Shortest Paths(最小费用最大流)

    描述 Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting ...

  3. CSU 1506 Problem D: Double Shortest Paths(最小费用最大流)

    题意:2个人从1走到n,假设一条路第一次走则是价值di,假设第二次还走这条路则须要价值di+ai,要你输出2个人到达终点的最小价值! 太水了!一条边建2次就OK了.第一次价值为di,第二次为ai+di ...

  4. POJ 2516 最小费用最大流

    每一种货物都是独立的,分成k次最小费用最大流即可! 1: /** 2: 因为e ==0 所以 pe[v] pe[v]^1 是两条相对应的边 3: E[pe[v]].c -= aug; E[pe[v]^ ...

  5. 网络流(最小费用最大流):POJ 2135 Farm Tour

    Farm Tour Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: ...

  6. UVa 10806 Dijkstra,Dijkstra(最小费用最大流)

    裸的费用流.往返就相当于从起点走两条路到终点. 按题意建图,将距离设为费用,流量设为1.然后增加2个点,一个连向节点1,流量=2,费用=0;结点n连一条同样的弧,然后求解最小费用最大流.当且仅当最大流 ...

  7. TZOJ 1513 Farm Tour(最小费用最大流)

    描述 When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 &l ...

  8. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  9. POJ 2135 Farm Tour(最小费用最大流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

随机推荐

  1. -_-#【HTML】同一个标签页打开

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. Kafka Topic Partition Replica Assignment实现原理及资源隔离方案

    本文共分为三个部分:   Kafka Topic创建方式 Kafka Topic Partitions Assignment实现原理 Kafka资源隔离方案   1. Kafka Topic创建方式 ...

  3. Spark使用CombineTextInputFormat缓解小文件过多导致Task数目过多的问题

    目前平台使用Kafka + Flume的方式进行实时数据接入,Kafka中的数据由业务方负责写入,这些数据一部分由Spark Streaming进行流式计算:另一部分数据则经由Flume存储至HDFS ...

  4. (转载)ubuntu安装pyton-pip问题解决

    一.问题描述 root@ubuntu:/home/chao# apt-get install python-pip 正在读取软件包列表... 完成 正在分析软件包的依赖关系树 正在读取状态信息... ...

  5. 文件夹oradiag_是如何产生的

    如果sqlnet.ora不可用或者ADR_BASE参数未定义,那么11g的 SQL*Net将创建这些文件夹 (详情:http://download.oracle.com/docs/cd/B28359_ ...

  6. Erasing Edges - SGU 136(构造多边形)

    题目大意:已知一个多边形上的每条边的中点,还原出来一个多边形. 分析:因为偶数是不固定的,所以可以为任意起点,奇数只有一个,可以所有中点加减算出来第一个点,然后就是简单的向量计算点的位置了...... ...

  7. selenium.common.exceptions.TimeoutException: Message: Screenshot: available via screen

    在使用selenium+phantomjs的时候在Windows平台下能够正常工作,在Linux下却不能,并得到错误信息: selenium.common.exceptions.TimeoutExce ...

  8. 构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(27)-权限管理系统-分配用户给角色

    原文:构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(27)-权限管理系统-分配用户给角色 分配用户给角色,跟分配角色给用户操作是基本一致的. 打开模块维护,展 ...

  9. 摄像头参数查看与调节 分类: C/C++ OpenCV 2014-11-08 18:13 138人阅读 评论(0) 收藏

    cvGetCaptureProperty 获得视频获取结构的属性 double cvGetCaptureProperty( CvCapture* capture, int property_id ); ...

  10. wdlinux mysql innodb的安装

    mysql innodb的安装 wget -c http://down.wdlinux.cn/in/mysql_innodb_ins.sh chmod 755 mysql_innodb_ins.sh ...