Frequent values
poj3368:http://poj.org/problem?id=3368
题意:给你一个非下降的序列,然后查询[l,r]内出现最多数字的次数。
题解:首先,因为序列是非下降的,所以相同的数字出现在在一起。所以,可以定义一个数组a[i]=k,表示第i个数出现的次数,另外还要记录几个东西,ll[i],rr[i],分别表示第i个数首次出现的位置和最后出现的位置。sum[i]到第i数出现结束之后一共有多少个数。准备好了这些东西之后。既可以开始了。第一步以数的个数(相同的算一个)建立线段树,叶子节点的值就是这个数出现的次数,然后维护区间最大值。2对于一个查询来说,是查询第几个数到第几个数之间出现的最大值的话,问题就爱很简单了。所以,我们要把查询转化成这样的就行了。query(l,r),我们可以通过lower_bound(sum+1,sum+temp+1)-sum,来找到l,r出现在第几个数中,然后我们查询l后面和r前面的数就可以啦 啊。对于l前面的部分,肯定是连续的,所以可以直接ll[l+1]-u得到左边的,v-rr[ed-1]得到右边的,然后3部分去最大值就可以啦。当然还有几个情况,就是1:l,r出现在同一个数中,那么可以直接u-v+1,如果是相隔一个数的话,max(sum[l]-u+1,v-sum[ed-1])即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=1e5+;
int ll[N],rr[N],sum[N];
int maxn[N*];
int a[N];
int n,q,temp;
void input(){
int t,tp;
scanf("%d",&t);
a[temp]=;
ll[temp]=;
for(int i=;i<=n;i++){
scanf("%d",&tp);
if(tp==t)a[temp]++;
else{
a[++temp]=;
ll[temp]=i;
rr[temp-]=i-;
t=tp;
}
}
rr[temp]=n;
}
void build(int l,int r,int rt){
if(l==r){
maxn[rt]=a[l];
return;
}
int mid=(l+r)/;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
maxn[rt]=max(maxn[rt<<],maxn[rt<<|]);
}
int query(int l,int r,int rt,int from,int to){
if(l==from&&r==to){
return maxn[rt];
}
int mid=(l+r)/;
if(mid>=to)return query(l,mid,rt<<,from,to);
else if(mid<from)return query(mid+,r,rt<<|,from,to);
else{
return max(query(l,mid,rt<<,from,mid),query(mid+,r,rt<<|,mid+,to));
}
}
int u,v;
int main(){
while(~scanf("%d",&n)){
if(n==)break;
scanf("%d",&q);
temp=;
input();
memset(maxn,,sizeof(maxn));
build(,temp,);
sum[]=;
for(int i=;i<=temp;i++){
sum[i]=sum[i-]+a[i];
}
for(int i=;i<=q;i++){
scanf("%d%d",&u,&v);
int st=lower_bound(sum+,sum+temp+,u)-sum;
int ed=lower_bound(sum+,sum+temp+,v)-sum;
st++;ed--;
if(ed>=st){
int ans1=query(,temp,,st,ed);
int ans2=ll[st]-u;
int ans3=v-rr[ed];
printf("%d\n",max(ans1,max(ans2,ans3)));
}
else if(st==ed+){
printf("%d\n",v-u+);
}
else{
st--,ed++;
printf("%d\n",max(sum[st]-u+,v-sum[ed-]));
}
} }
}
Frequent values的更多相关文章
- UVA - 11235 Frequent values
2007/2008 ACM International Collegiate Programming Contest University of Ulm Local Contest Problem F ...
- poj 3368 Frequent values(RMQ)
/************************************************************ 题目: Frequent values(poj 3368) 链接: http ...
- H - Frequent values
Problem F: Frequent values You are given a sequence of n integers a1 , a2 , ... , an in non-decreasi ...
- Frequent values && Ping pong
Frequent values 题意是不同颜色区间首尾相接,询问一个区间内同色区间的最长长度. 网上流行的做法,包括翻出来之前POJ的代码也是RMQ做法,对于序列上的每个数,记录该数向左和向右延续的最 ...
- 【暑假】[实用数据结构]UVa11235 Frequent values
UVa 11235 Frequent values Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11241 Accep ...
- [HDU 1806] Frequent values
Frequent values Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- 数据结构(RMQ):UVAoj 11235 Frequent values
Frequent values You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. I ...
- [POJ] 3368 / [UVA] 11235 - Frequent values [ST算法]
2007/2008 ACM International Collegiate Programming Contest University of Ulm Local Contest Problem F ...
- poj 3368 Frequent values(段树)
Frequent values Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13516 Accepted: 4971 ...
- UVA 11235 Frequent values(RMQ)
Frequent values TimeLimit:3000Ms , ... , an in non-decreasing order. In addition to that, you are gi ...
随机推荐
- android异步任务载入数据界面实现
android 异步任务的一个后台方法本质是开启一个线程完毕耗时操作,其它onPostExecute方法和onPreExecute方法执行在UI主线程用于更新UI界面.为了提高用户体验常见的异步任务载 ...
- zedboard--交叉编译Opencv库的生成 分类: shell ubuntu fool_tree的笔记本 ZedBoard OpenCV 2014-11-08 18:57 171人阅读 评论(0) 收藏
Opencv的移植,xzyfeixiang和rainysky的博客. 第一步肯定是下载opencv的源码包 第二步已经做好的交叉编译环境. 第三步下载安装cmake apt-get install ...
- 【iOS】iOS之Button segue弹出popOver消除(dismiss)问题
如图.由于程序须要,点击Button Ctrl+Dragging加入了一个UITableViewController,当然其余的Controller也能够,这样我们在方法 -(void)prepare ...
- shell之“>/dev/null 2>&1” 详解(转)
今天在自己的一个技术群中又被问道了这么一个问题,于是又通俗的解释了一下,做个记录,大家看看解释是否清楚! shell中可能经常能看到:>/dev/null 2>&1 命令的结果可以 ...
- ExtJs4学习(四):Extjs 中id与itemId的差别
为了方便表示或是指定一个组件的名称,我们一般会使用id或者itemId进行标识命名. (推荐尽量使用itemId.这样能够降低页面唯一标识而产生的冲突) id: id是作为整个页面的Comp ...
- 蓝牙代理报错:invalid handle error
错误症状: -(void)peripheral:(CBPeripheral *)peripheral didUpdateNotificationStateForCharacteristic:(CBCh ...
- JS快速排序和去重
JS的快速排序和JS去重在面试的时候问的挺多的.下面是我对快速排序的理解,和快速排序,去重的代码. 1.什么是快速排序? 第一步: 快速排序就是去个中间值,把比中间值小的放在左边设为arrLeft,比 ...
- java之log4j的配置
java之log4j的配置 log4j有很多的优点,用起来很方便,就是配置起来有些麻烦,下面我介绍一下log4j的配置方法. log4j是用来记录日志的. 软件的运行过程离不开日志.日志主要用来记录系 ...
- 共享受限资源,Brian的同步规则
说明:如果一个变量是boolean,则此变量是原子性的,即赋值和返回值简单的操作在发生时没有中断的可能. 递增不是原子性炒作. 解决共享资源竞争: 1. 通过加锁,锁语句会产生相互排斥的效果,此种机制 ...
- IOS常用开源库
转自:http://www.csdn.net/article/2013-06-18/2815806-GitHub-iOS-open-source-projects-two/1 1. AFNetwork ...