使用单调队列优化的 O(nm) 多重背包算法
我搜索了一下,找到了一篇很好的博客,讲的挺详细:链接。
解析
多重背包的最原始的状态转移方程:
令 c[i] = min(num[i], j / v[i])
f[i][j] = max(f[i-1][j-k*v[i]] + k*w[i]) (1 <= k <= c[i]) 这里的 k 是指取第 i 种物品 k 件。
如果令 a = j / v[i] , b = j % v[i] 那么 j = a * v[i] + b.
这里用 k 表示的意义改变, k 表示取第 i 种物品的件数比 a 少几件。
那么 f[i][j] = max(f[i-1][b+k*v[i]] - k*w[i]) + a*w[i] (a-c[i] <= k <= a)
可以发现,f[i-1][b+k*v[i]] - k*w[i] 只与 k 有关,而这个 k 是一段连续的。我们要做的就是求出 f[i-1][b+k*v[i]] - k*w[i] 在 k 取可行区间内时的最大值。
这就可以使用单调队列优化。
代码
其中 Q1 是一个用来存储可用状态的队列, Q2 是单调队列。
//f[i][j] = max(f[i-1][b+k*v[i]] - k*w[i]) + a*w[i] (a-c[i] <= k <= a) for (int i = 1; i <= n; ++i) {
Ni = Num[i]; Vi = V[i]; Wi = W[i];
for (int j = 0; j < Vi; ++j) {
Head1 = Tail1 = 0;
Head2 = Tail2 = 0;
Cnt = 0;
for (int k = j; k <= m; k += Vi) {
if (Tail1 - Head1 == Ni + 1) {
if (Q2[Head2 + 1] == Q1[Head1 + 1]) ++Head2;
++Head1;
}
t = f[k] - Cnt * Wi;
Q1[++Tail1] = t;
while (Head2 < Tail2 && Q2[Tail2] < t) --Tail2;
Q2[++Tail2] = t;
f[k] = Q2[Head2 + 1] + Cnt * Wi;
++Cnt;
}
}
}
例题:HDOJ - 1171
使用单调队列优化的 O(nm) 多重背包算法的更多相关文章
- 【POJ1276】Cash Machine(多重背包单调队列优化)
大神博客转载http://www.cppblog.com/MatoNo1/archive/2011/07/05/150231.aspx多重背包的单调队列初中就知道了但一直没(不会)写二进制优化初中就写 ...
- [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化)
[BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化) 题面 马上就是小苗的生日了,为了给小苗准备礼物,小葱兴冲冲地来到了商店街.商店街有n个商店,并且它们之间的道路构成了一颗树 ...
- bzoj4182 Shopping 点分治+单调队列优化多重背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4182 题解 有一个很直观的想法是设 \(dp[x][i]\) 表示在以 \(x\) 为根的子树 ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- Luogu 3423 [POI 2005]BAN-银行票据 (多重背包单调队列优化 + 方案打印)
题意: 给出 n 种纸币的面值以及数量,求最少使用多少张纸币能凑成 M 的面额. 细节: 好像是要输出方案,看来很是头疼啊. 分析: 多重背包,裸体??? 咳咳,好吧需要低调,状态就出来了: dp [ ...
- [Bzoj4182]Shopping(点分治)(树上背包)(单调队列优化多重背包)
4182: Shopping Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 374 Solved: 130[Submit][Status][Disc ...
- POJ 1742 (单调队列优化多重背包+混合背包)
(点击此处查看原题) 题意分析 给你n种不同价值的硬币,价值为val[1],val[2]...val[n],每种价值的硬币有num[1],num[2]...num[n]个,问使用这n种硬币可以凑齐[1 ...
- bzoj1531[POI2005]Bank notes 单调队列优化dp
1531: [POI2005]Bank notes Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 559 Solved: 310[Submit][Sta ...
- 单调队列以及单调队列优化DP
单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...
随机推荐
- 每天一个JavaScript实例-从一个div元素删除一个段落
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- DirectShow VS2013 控制台下捕捉摄像头而且显示
须要lib库文件 strmiids.lib,下载地址:http://download.csdn.net/detail/dopamy_busymonkey/8872687 放在解决方式中项目的根文件夹中 ...
- hadoop编程技巧(4)---总体情况key按类别搜索TotalOrderPartitioner
Hadoop代码测试版:Hadoop2.4 原理:携带MR该程序随机抽样提取前的输入数据,样本分类,然后,MR该过程的中间Partition此值用于当样品排序分组数据.这使得可以实现全球排名的目的. ...
- curl post参数,接口接收不到数据问题
今天遇到一个问题,注册下发短信失败,总提示无法发送注册短信,请从新发送. 经检查,curl里面将post数据以json_encode的方法转码之后传递,而且各选项设置感觉没有问题,怎么接口就接收不到p ...
- OC-KVO简介
一,概述 KVO,即:Key-Value Observing,它提供一种机制,当指定的对象的属性被修改后,则对象就会接受到通知.简单的说就是每次指定的被观察的对象的属性被修改后,KVO就会自动通知相应 ...
- 2进制,16进制,BCD,ascii,序列化对象相互转换
public final static char[] BToA = "0123456789abcdef".toCharArray() ; 1.16进制字符串转为字节数组 /** * ...
- 关于c++中的引用
引用是个别名. 1.引用是否占用空间 引用是否占用空间,此处是指广义上的占用内存空间,即为该对象新开辟一块内存.这个需要分不同的情况. 首先看一下常引用(const 引用). 这里关于常引用在c++ ...
- Length 和 Width在矩形中的定义.
Length is the longer or longest dimension of a rectangle (or even an object). Ref:http://mathforum.o ...
- one way WebService
WSDL支持4种消息交换方式: 1)单向(One-way):服务端接收消息: 2)请求响应(Request-response):服务端点接收请求消息,然后发送响应消息: 3)要求应答(So ...
- linux 命令学习(4)
Linux中常用的关机和重新启动命令有shutdown.halt.reboot以及init,它们都可以达到关机和重新启动的目的,但是每个命令的内部工作过程是不同的,下面将逐一进行介绍. 1. shut ...