我搜索了一下,找到了一篇很好的博客,讲的挺详细:链接

解析

多重背包的最原始的状态转移方程:

令 c[i] = min(num[i], j / v[i])

f[i][j] = max(f[i-1][j-k*v[i]] + k*w[i])     (1 <= k <= c[i])  这里的 k 是指取第 i 种物品 k 件。

如果令 a = j / v[i] , b = j % v[i] 那么 j = a * v[i] + b.

这里用 k 表示的意义改变, k 表示取第 i 种物品的件数比 a 少几件。

那么 f[i][j] = max(f[i-1][b+k*v[i]] - k*w[i]) + a*w[i]      (a-c[i] <= k <= a)

可以发现,f[i-1][b+k*v[i]] - k*w[i] 只与 k 有关,而这个 k 是一段连续的。我们要做的就是求出 f[i-1][b+k*v[i]] - k*w[i] 在 k 取可行区间内时的最大值。

这就可以使用单调队列优化。

代码

其中 Q1 是一个用来存储可用状态的队列, Q2 是单调队列。

//f[i][j] = max(f[i-1][b+k*v[i]] - k*w[i]) + a*w[i]   (a-c[i] <= k <= a)

for (int i = 1; i <= n; ++i) {
Ni = Num[i]; Vi = V[i]; Wi = W[i];
for (int j = 0; j < Vi; ++j) {
Head1 = Tail1 = 0;
Head2 = Tail2 = 0;
Cnt = 0;
for (int k = j; k <= m; k += Vi) {
if (Tail1 - Head1 == Ni + 1) {
if (Q2[Head2 + 1] == Q1[Head1 + 1]) ++Head2;
++Head1;
}
t = f[k] - Cnt * Wi;
Q1[++Tail1] = t;
while (Head2 < Tail2 && Q2[Tail2] < t) --Tail2;
Q2[++Tail2] = t;
f[k] = Q2[Head2 + 1] + Cnt * Wi;
++Cnt;
}
}
}

例题:HDOJ - 1171

使用单调队列优化的 O(nm) 多重背包算法的更多相关文章

  1. 【POJ1276】Cash Machine(多重背包单调队列优化)

    大神博客转载http://www.cppblog.com/MatoNo1/archive/2011/07/05/150231.aspx多重背包的单调队列初中就知道了但一直没(不会)写二进制优化初中就写 ...

  2. [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化)

    [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化) 题面 马上就是小苗的生日了,为了给小苗准备礼物,小葱兴冲冲地来到了商店街.商店街有n个商店,并且它们之间的道路构成了一颗树 ...

  3. bzoj4182 Shopping 点分治+单调队列优化多重背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4182 题解 有一个很直观的想法是设 \(dp[x][i]\) 表示在以 \(x\) 为根的子树 ...

  4. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  5. Luogu 3423 [POI 2005]BAN-银行票据 (多重背包单调队列优化 + 方案打印)

    题意: 给出 n 种纸币的面值以及数量,求最少使用多少张纸币能凑成 M 的面额. 细节: 好像是要输出方案,看来很是头疼啊. 分析: 多重背包,裸体??? 咳咳,好吧需要低调,状态就出来了: dp [ ...

  6. [Bzoj4182]Shopping(点分治)(树上背包)(单调队列优化多重背包)

    4182: Shopping Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 374  Solved: 130[Submit][Status][Disc ...

  7. POJ 1742 (单调队列优化多重背包+混合背包)

    (点击此处查看原题) 题意分析 给你n种不同价值的硬币,价值为val[1],val[2]...val[n],每种价值的硬币有num[1],num[2]...num[n]个,问使用这n种硬币可以凑齐[1 ...

  8. bzoj1531[POI2005]Bank notes 单调队列优化dp

    1531: [POI2005]Bank notes Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 559  Solved: 310[Submit][Sta ...

  9. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

随机推荐

  1. 异常Address already in use: JVM_Bind的处理

    如题,Address already in use: JVM_Bind这个异常的意思就是说jvm被占用了 那么大家一般的解决情况都是重启一下eclipse , 结果还是不行,结果就只能重启电脑了. 对 ...

  2. [RxJS] Filtering operator: single, race

    Single, race both get only one emit value from the stream. Single(fn): const source = Rx.Observable. ...

  3. android生成验证码bitmap

    不多说了,直接上代码,项目中用到的,未做优化,还有很多参数未设置. [java] view plaincopy 1.import java.util.Random; 2. 3.import andro ...

  4. mysql 存储过程项目小结

    1. false :0  true 1 切记 官方文档:http://dev.mysql.com/doc/refman/5.0/en/numeric-type-overview.html BOOL,  ...

  5. 设置Eclipse中文API提示信息

    准备工作:下载中文API到本机:http://download.java.net/jdk/jdk-api-localizations/jdk-api-zh-cn/publish/1.6.0/html_ ...

  6. Socket.IO 概述

    为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/SJQ. http://www.cnblogs.com/shijiaqi1066/p/3826251.html ...

  7. 原生JS添加节点方法与jQuery添加节点方法的比较及总结

    一.首先构建一个简单布局,来供下边讲解使用 1.HTML部分代码: <div id="div1">div1</div> <div id="d ...

  8. 利用SQLiteOpenHelper创建数据库,进行增删改查操作

    Android中提供SQLiteOpenHelper类,在该类的构造器中,调用Context中的方法创建并打开一个指定名称的数据库对象.继承和扩展SQLiteOpenHelper类主要做的工作就是重写 ...

  9. oracle安装遇到的问题

    这两天要做一个项目,教师招聘系统.要用oracle.就安装了oracle 12c,安装的过程中遇到了一些问题,最后自己解决了.我是win7系统. 第一个报错: [INS-30131]执行安装程序验证所 ...

  10. Android布局管理器(线性布局)

    线性布局有LinearLayout类来代表,Android的线性布局和Swing的Box有点相似(他们都会将容器里面的组件一个接一个的排列起来),LinearLayout中,使用android:ori ...