\[\begin{eqnarray*}
&&\sum_{i=0}^{n-1}\left(ki+b-a_i\right)^2\\
&=&\sum_{i=0}^{n-1}\left(k^2i^2+b^2+a_i^2+2kbi-2kia_i-2ba_i\right)\\
&=&k^2\sum_{i=0}^{n-1}i^2+nb^2+\sum_{i=0}^{n-1}a_i^2+2kb\sum_{i=0}^{n-1}i-2k\sum_{i=0}^{n-1}ia_i-2b\sum_{i=0}^{n-1}a_i\\
\end{eqnarray*}\]

  设
\[\begin{eqnarray*}
A&=&\sum_{i=0}^{n-1}i^2\\
B&=&\sum_{i=0}^{n-1}i\\
C&=&\sum_{i=0}^{n-1}ia_i\\
D&=&\sum_{i=0}^{n-1}a_i\\
\end{eqnarray*}\]
  则只需最小化
\[\begin{eqnarray*}
&&Ak^2+nb^2+2kBb-2kC-2Db\\
&=&nb^2+(2kB-2D)b+Ak^2-2kC\\
\end{eqnarray*}\]
  这是个关于$b$的二次函数,显然当$b$取$\frac{D-kB}{n}$时取得最小值,将$b$用$k$表示,则
\[\begin{eqnarray*}
&&Ak^2+nb^2+2kBb-2kC-2Db\\
&=&Ak^2+\frac{\left(D-kB\right)^2}{n}+\frac{2kB\left(D-kB\right)}{n}-2kC-\frac{2D\left(D-kB\right)}{n}\\
&=&Ak^2+\frac{-D^2-B^2k^2+2BDk}{n}-2Ck\\
&=&\frac{nAk^2-2nCk-D^2-B^2k^2+2BDk}{n}\\
&=&\frac{\left(nA-B^2\right)k^2+\left(2BD-2nC\right)k-D^2}{n}\\
\end{eqnarray*}\]
  这也是个关于$k$的二次函数,显然当$k$取$\frac{nC-BD}{nA-B^2}$时取得最小值。直接计算即可,时间复杂度$O(n)$。

#include<cstdio>
int n,i,j;double A,B,C,D,k,b;
inline void read(int&a){
char c;bool f=0;a=0;
while(!((((c=getchar())>='0')&&(c<='9'))||(c=='-')));
if(c!='-')a=c-'0';else f=1;
while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';
if(f)a=-a;
}
int main(){
for(read(n);i<n;i++)read(j),A+=1.0*i*i,B+=i,C+=1.0*i*j,D+=j;
k=(C*n-B*D)/(A*n-B*B),b=(D-k*B)/n;
return printf("%.7f %.7f",b,k),0;
}

  

BZOJ3095 : 二元组的更多相关文章

  1. 牛客网 桂林电子科技大学第三届ACM程序设计竞赛 C.二元-K个二元组最小值和最大-优先队列+贪心(思维)

    链接:https://ac.nowcoder.com/acm/contest/558/C来源:牛客网 小猫在研究二元组. 小猫在研究最大值. 给定N个二元组(a1,b1),(a2,b2),…,(aN, ...

  2. 读取二元组列表,打印目录的层级结构-----C++算法实现

    要求是--某个文件中存储了一个最多3层的层级结构,其中每个元素都是一个自然数,它的存储方法是一个二元组的列表,每个二元组的形式为:(元素,父元素).现在希望能够通过读取该二元组列表,打印出目录的层级结 ...

  3. Java实现蓝桥杯互补二元组

    分三处 1.当差值为0并且只有一个二元组就不管他 2.当差值为0并且二元组个数>=1加上他并减去它本身 3.当差值为存在并且不为0时直接加上他 因为都计算了两次,所以最后ans/2 用了map的 ...

  4. Swift(二,元组,可选类型,类型转化)

    一,首先,元组是Swift中特有的,OC中没有元组相关类型,具体怎么用,看下面的例子吧 //1.使用元组来定义一组数据 let infoTuple = (,1.8) let nameTuple = i ...

  5. Python强化训练笔记(二)——元组元素的命名

    对于一个元组如: >>> s1 = ('Jim', 21, 'boy', '5788236@qq.com') 我们要得到该对象的名字,年龄,性别及邮箱的方法为s1[0],s1[1], ...

  6. Swift--基础(二)元组 断言 错误处理

    元组(tuples) 把多个值组合成一个复合值.元组内的值可以是任意类型,并不要求是相同类型 let http404Error = (404, "Not Found") let ( ...

  7. A1261. happiness(吴确)[二元组暴力最小割建模]

    A1261. happiness(吴确) 时间限制:500ms   内存限制:512.0MB   总提交次数:158   AC次数:72   平均分:56.71   将本题分享到:        查看 ...

  8. (ACM模板)二元组pair

    #include<iostream> #include<cstdio> #include<utility> using namespace std; typedef ...

  9. Day5-python基础之函数(二)

    生成器 迭代器 装饰器 模块   来个需求,一个列表中所有元素都+1 1.最容易想到的方法 for循环,找列表索引,对应每个值+1 list_old = [1,2,3,4,5,6,7,8,9] for ...

随机推荐

  1. VS2015常用快捷键总结

    生成解决方案 F6,生成项目Shift+F6 调试执行F5,终止调试执行Shift+F5 执行调试Ctrl+F5 查找下一个F3,查找上一个Shift+F3 附加到进程Ctrl+Alt+P,逐过程F1 ...

  2. 浅谈JSP中include指令与include动作标识的区别

    JSP中主要包含三大指令,分别是page,include,taglib.本篇主要提及include指令. include指令使用格式:<%@ include file="文件的绝对路径 ...

  3. JAVA回调机制解析

    一.回调机制概述     回调机制在JAVA代码中一直遇到,但之前不懂其原理,几乎都是绕着走.俗话说做不愿意做的事情叫做突破,故诞生了该文章,算是新年的新气象,新突破!     回调机制是什么?其实回 ...

  4. CommandPattern

    /** * 命令模式 * @author TMAC-J * 将调用者和接受者分离 * 可以将一组命令组合在一起,适合很多命令的时候 */ public class CommandPattern { i ...

  5. FreeMarker:怎么使用

    第一个FreeMarker程序 1. 建立一个普通的java项目:testFreeMarker 2. 引入freemarker.jar包 3. 在项目目录下建立模板目录:templates 4. 在t ...

  6. BPM配置故事之案例7-公式计算

    行政主管发来邮件.要求物资明细表增加"单价""总价"."单价"由其审批时填写,"总价"根据"单价"与 ...

  7. 二叉树的递归实现(java)

    这里演示的二叉树为3层. 递归实现,先构造出一个root节点,先判断左子节点是否为空,为空则构造左子节点,否则进入下一步判断右子节点是否为空,为空则构造右子节点. 利用层数控制迭代次数. 依次递归第二 ...

  8. 让 asp.net 在 mac 上飞

    .NET 不跨平台一直饱受争议,虽然微软前端时间放出些消息,要支持.NET跨平台的发展,但是微软一直坚持着不主动.不拒绝.不负责的三不态度,仍然用一种软件帝国的心态,折腾着一些毫无新意的东西.微软想要 ...

  9. 【完全开源】知乎日报UWP版(下篇):商店APP、github源码、功能说明。Windows APP 良心出品。

    目录 说明 功能 截图+视频 关于源码和声明 说明 陆陆续续大概花了一个月的时间,APP算是基本完成了.12月份一直在外出差,在出差期间进行了两次功能完善,然后断断续续修补了一些bug,到目前为止,我 ...

  10. 压缩javascript文件方法

    写在前面的话:正式部署前端的时候,javascript文件一般需要压缩,并生成相应的sourcemap文件,对于一些小型的项目开发,这里提供一个简单的办法. ======正文开始====== 1.下载 ...