[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4
(1). The singular value decomposition leads tot eh polar decomposition: Every operator $A$ can be written as $A=UP$, where $U$ is unitary and $P$ is positive. In this decomposition the positive part $P$ is unique, $P=|A|$. The unitary part $U$ is unique if $A$ is invertible.
(2). An operator $A$ is normal if and only if the factors $U$ and $P$ in the polar decomposition of $A$ commute.
(3). We have derived the polar decomposition from the singular value decomposition. Show that it is possible to derive the latter from the former.
Solution.
(1). By the singular value decomposition, there exists unitaries $W$ and $Q$ such that $$\bex A=WSQ^*, \eex$$ and thus $$\bex A=WQ^*\cdot QSQ^*. \eex$$ Setting $$\bex U=WQ^*,\quad P=QSQ^*=|A|, \eex$$ we are completed.
(2). $\ra$: By density argument, we may assume $A$ is invertible. Suppose $A$ is normal and $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex A=V\vLm V^*,\quad \vLa=\diag(\lm_1,\cdots,\lm_n). \eex$$ By the uniqueness part of (1), $$\bex U=V\sgn(\vLm)V^*,\quad P=V|\vLm|V^*, \eex$$ and thus $UP=PU=A$. $\la$: Suppose $A=UP$ is the polar decomposition with $UP=PU$, then $$\bex A^*A=PU^*UP=P^2, \eex$$ $$\bex AA^*=UP\cdot(UP)^*=PU\cdot (PU)^* =PUU^*P=P^2. \eex$$
(3). Suppose $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex P=V\diag(s_1,\cdots,s_n)V^*,\quad s_i\geq 0. \eex$$ Hence, $$\bex A=UV\cdot \diag(s_1,\cdots,s_n)\cdot V^*. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- ueditor使用代码高亮的方法
最近发现ueditor支持代码高亮,但是页面上并没有起效果,于是网上找了下,发现还需做如下修改: 1.页面引用以下资源文件(均位于ueditor目录中): <script type=" ...
- STM32F40xxx 与 STM32F41xxx Flash结构详解
本文原创于http://www.cnblogs.com/humaoxiao,非法转载者请自重! 硬件平台:STM32F4 DISCOVERY开发板 型号:MB997A或MB997C主芯片型号:ST ...
- iOS数据库操作流程
SQLite最新的版本是3.0,使用之前应该先导入libsqlite3.0.dylib 1.导入流程 2.iOS中操作数据库的流程 打开数据库 准备SQL数据库 执行SQL数据库 语句完结 关闭数据库 ...
- ehcache集群的配置
一:配置环境 本文是在测试demo的基础上写的,服务器包括申请的两台服务器和本机,共三台服务器.demo的目标是实现三台服务器之间共享cache. 申请的两台服务器地址分别是172.19.100.15 ...
- [CSS]white-space 属性详解
实例 规定段落中的文本不进行换行: p { white-space: nowrap } 可能的值 值 描述 normal 默认.空白会被浏览器忽略. pre 空白会被浏览器保留.其行为方式类似 HTM ...
- 上传头像,界面无跳转,php+js
上传头像,界面无跳转的方式很多,我用的是加个iframe那种.下面直接上代码. html: //route 为后端接口//upload/avatar 为上传的头像的保存地址//imgurl=/uplo ...
- hdu 2087 剪花布条 KMP多次匹配
剪花布条 Problem Description 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? I ...
- E8.NET工作流平台如何与其他软件系统集成?
1.与邮件系统集成 E8.Net工作流开发架构已经提供了与电子邮件系统集成的模块,可以轻松实现与EXCHANGE等专业邮件系统集成的应用需求. 2.与短信系统集成 E8.Net工作流架构已经提供了手机 ...
- cocos2dx3.4 解析json文件
头文件: #include "json/document.h" #include "json/stringbuffer.h" #include "js ...
- 对于shell脚本参数获取时的一点小技巧
问题如下: 根据脚本参数的个数$#进行一个循环,在依次输出每个参数$1 $2 $3...... 我有一个循环变量i $i 取到这时的i为1,我想使用这个1再去调用$1,也是就是打印出第一个参数 就是$ ...