(1). The singular value decomposition leads tot eh polar decomposition: Every operator $A$ can be written as $A=UP$, where $U$ is unitary and $P$ is positive. In this decomposition the positive part $P$ is unique, $P=|A|$. The unitary part $U$ is unique if $A$ is invertible.

(2). An operator $A$ is normal if and only if the factors $U$ and $P$ in the polar decomposition of $A$ commute.

(3). We have derived the polar decomposition from the singular value decomposition. Show that it is possible to derive the latter from the former.

Solution.

(1). By the singular value decomposition, there exists unitaries $W$ and $Q$ such that $$\bex A=WSQ^*, \eex$$ and thus $$\bex A=WQ^*\cdot QSQ^*. \eex$$ Setting $$\bex U=WQ^*,\quad P=QSQ^*=|A|, \eex$$ we are completed.

(2). $\ra$: By density argument, we may assume $A$ is invertible. Suppose $A$ is normal and $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex A=V\vLm V^*,\quad \vLa=\diag(\lm_1,\cdots,\lm_n). \eex$$ By the uniqueness part of (1), $$\bex U=V\sgn(\vLm)V^*,\quad P=V|\vLm|V^*, \eex$$ and thus $UP=PU=A$. $\la$: Suppose $A=UP$ is the polar decomposition with $UP=PU$, then $$\bex A^*A=PU^*UP=P^2, \eex$$ $$\bex AA^*=UP\cdot(UP)^*=PU\cdot (PU)^* =PUU^*P=P^2. \eex$$

(3). Suppose $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex P=V\diag(s_1,\cdots,s_n)V^*,\quad s_i\geq 0. \eex$$ Hence, $$\bex A=UV\cdot \diag(s_1,\cdots,s_n)\cdot V^*. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 生产项目加入到SVN版本控制

    零.介绍 每天定时备份是通过ftp打包和同步的方式,这些都是比较粗的备份,没法恢复到指定时间的文件,所以需要用到svn控制版本. (请不要问我为什么不用git) 一.现有项目文件加入版本控制 因为项目 ...

  2. jQuery.hhNewSilder 滚动图片插件

    /**  * jQuery.hhNewSilder 滚动图片插件  * User: huanhuan  * QQ: 651471385  * Email: th.wanghuan@gmail.com ...

  3. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

  4. Interface和Abstract class区别

    在面向对象中,Interface和Abstract class是实现抽象类定义的两种机制. 1.声明方法的存在而不去实现它的类被叫做抽象类(abstract class),它用于要创建一个体现某些基本 ...

  5. c++ 类的对象与指针

    这里首先我们需区分一下指针数组和数组指针. 指针数组:int *p[4];它最终是个数组,只是这个数组存储的是4个指向int类型的指针. 数组指针:int (*P)[4];它最终是个指针,表示一个指向 ...

  6. linux下fflush(stdin)的使用问题

    参考自linux下如何清空(刷新)stdin缓冲区 首先,fflush在C/C++/POSIX标准中只定义了处理输出流的行为,对于像stdin这种输入流,这是未定义行为undefined behavi ...

  7. Java 单链表逆序

    代码: package com.wangzhu.linkedlist; public class LinkedListDemo { /** * @param args */ public static ...

  8. 去除Coding4Fun中MessagePrompt的边框(Border)

    在App.xaml文件中添加 xmlns:c4f="clr-namespace:Coding4Fun.Toolkit.Controls;assembly=Coding4Fun.Toolkit ...

  9. UIcollectionView的使用(首页的搭建4)

    2.5 头部视图

  10. HTTP Header 入门详解

    什么是HTTP Headers HTTP是"Hypertext Transfer Protocol"的所写,整个www都在使用这种协定,几乎你在流览器里看到的大部分内容都是通过ht ...