(1). The singular value decomposition leads tot eh polar decomposition: Every operator $A$ can be written as $A=UP$, where $U$ is unitary and $P$ is positive. In this decomposition the positive part $P$ is unique, $P=|A|$. The unitary part $U$ is unique if $A$ is invertible.

(2). An operator $A$ is normal if and only if the factors $U$ and $P$ in the polar decomposition of $A$ commute.

(3). We have derived the polar decomposition from the singular value decomposition. Show that it is possible to derive the latter from the former.

Solution.

(1). By the singular value decomposition, there exists unitaries $W$ and $Q$ such that $$\bex A=WSQ^*, \eex$$ and thus $$\bex A=WQ^*\cdot QSQ^*. \eex$$ Setting $$\bex U=WQ^*,\quad P=QSQ^*=|A|, \eex$$ we are completed.

(2). $\ra$: By density argument, we may assume $A$ is invertible. Suppose $A$ is normal and $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex A=V\vLm V^*,\quad \vLa=\diag(\lm_1,\cdots,\lm_n). \eex$$ By the uniqueness part of (1), $$\bex U=V\sgn(\vLm)V^*,\quad P=V|\vLm|V^*, \eex$$ and thus $UP=PU=A$. $\la$: Suppose $A=UP$ is the polar decomposition with $UP=PU$, then $$\bex A^*A=PU^*UP=P^2, \eex$$ $$\bex AA^*=UP\cdot(UP)^*=PU\cdot (PU)^* =PUU^*P=P^2. \eex$$

(3). Suppose $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex P=V\diag(s_1,\cdots,s_n)V^*,\quad s_i\geq 0. \eex$$ Hence, $$\bex A=UV\cdot \diag(s_1,\cdots,s_n)\cdot V^*. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. HPDL380G8平台11.2.0.3 RAC实施手册

    HPDL380G8平台11.2.0.3 RAC实施手册   1 前言 此文档详细描述了Oracle 11gR2 数据库在HPDL380G上的安装RAC的检查及安装步骤.文档中#表示root用户执行,$ ...

  2. VS2010 EntityFramework Database First

    本文演练介绍如何使用实体框架进行 Database First 开发.通过 Database First,可以从现有数据库对模型进行反向工程处理.模型存储在一个 EDMX 文件(扩展名为 .edmx) ...

  3. 如何自动拼接 Update语句,仅Update已修改的字段

    我们通常使用update语句更新数据库记录,例如使用update user set username='001', nickname='Tom', age=18 where id = 1语句更新use ...

  4. vsftpd.conf配置详解

    根据 /etc/vsftpd/vsftpd.conf默认配置给出设定功能   # Example config file /etc/vsftpd/vsftpd.conf # The default c ...

  5. 基于Jquery的banner轮播插件,简单粗暴

    新手练习封装插件,觉着在前端这一块的轮播比较多,各种旋转木马一类的3D旋转,技术不够,所以封装了一个简单的banner轮播插件,功能也比较简单,就是左右向的轮播. 先挂地址https://github ...

  6. [C#]将千分位字符串转换成数字

    关键代码: /// <summary> /// 将千分位字符串转换成数字 /// 说明:将诸如"–111,222,333的千分位"转换成-111222333数字 /// ...

  7. html+ashx 缓存问题

    最近采用html+ashx的方式做了一个项目的几个配置页面的功能,由于浏览器的缓存问题,每次更新数据提交后,页面总是不会刷新,也就是说除了第一次加载页面会向一般处理(ashx)拿数据外,其他情况都是优 ...

  8. Node.js学习心得

    最近花了三四周的时间学习了Node.js ,感觉Node.js在学习过程中和我大学所学的专业方向.NET在学习方法上有好多的相似之处,下面就将我学习的心得体会以及参考的资料总结归纳如下,希望对于刚入门 ...

  9. 基于Hadoop生态圈的数据仓库实践 —— ETL

    使用Hive转换.装载数据 1. Hive简介 (1)Hive是什么         Hive是一个数据仓库软件,使用SQL读.写.管理分布式存储上的大数据集.它建立在Hadoop之上,具有以下功能和 ...

  10. PHP学习心得(三)——处理表单

    表单的任何元素都在 PHP 脚本中自动生效. 一个简单的 HTML 表单: <form action="action.php" method="post" ...