[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4
(1). The singular value decomposition leads tot eh polar decomposition: Every operator $A$ can be written as $A=UP$, where $U$ is unitary and $P$ is positive. In this decomposition the positive part $P$ is unique, $P=|A|$. The unitary part $U$ is unique if $A$ is invertible.
(2). An operator $A$ is normal if and only if the factors $U$ and $P$ in the polar decomposition of $A$ commute.
(3). We have derived the polar decomposition from the singular value decomposition. Show that it is possible to derive the latter from the former.
Solution.
(1). By the singular value decomposition, there exists unitaries $W$ and $Q$ such that $$\bex A=WSQ^*, \eex$$ and thus $$\bex A=WQ^*\cdot QSQ^*. \eex$$ Setting $$\bex U=WQ^*,\quad P=QSQ^*=|A|, \eex$$ we are completed.
(2). $\ra$: By density argument, we may assume $A$ is invertible. Suppose $A$ is normal and $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex A=V\vLm V^*,\quad \vLa=\diag(\lm_1,\cdots,\lm_n). \eex$$ By the uniqueness part of (1), $$\bex U=V\sgn(\vLm)V^*,\quad P=V|\vLm|V^*, \eex$$ and thus $UP=PU=A$. $\la$: Suppose $A=UP$ is the polar decomposition with $UP=PU$, then $$\bex A^*A=PU^*UP=P^2, \eex$$ $$\bex AA^*=UP\cdot(UP)^*=PU\cdot (PU)^* =PUU^*P=P^2. \eex$$
(3). Suppose $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex P=V\diag(s_1,\cdots,s_n)V^*,\quad s_i\geq 0. \eex$$ Hence, $$\bex A=UV\cdot \diag(s_1,\cdots,s_n)\cdot V^*. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- PHP 各种函数
usleep() 函数延迟代码执行若干微秒. unpack() 函数从二进制字符串对数据进行解包. uniqid() 函数基于以微秒计的当前时间,生成一个唯一的 ID. time_sleep_unti ...
- jQuery Mobile里xxx怎么用呀?(控件篇)
jQuery Mobile里都有什么控件? http://api.jquerymobile.com/category/widgets/ jQuery Mobile里slider控件的change事件怎 ...
- AVPlayer 视频播放
1. AVPlayer AVPlayer 是一个用来播放基于时间的视听媒体的控制器对象(一个队播放和资源时间相隔信息进行管理的对象,而非一个视图或窗口控制器). AVPlayer支持播放从本地, 分步 ...
- 关于静态库和动态库的理解(C++)
库的存在,是软件模块化的基础. 库存在的意义: } 库是别人写好的现有的,成熟的,可以复用的代码,你可以使用但要记得遵守许可协议. } 现实中每个程序都要依赖很多基础的底层库,不可能每个人的 ...
- Java集合框架类图
Java集合框架的类图 http://blog.toruneko.net/28
- org.springframework.orm.jpa.JpaTransactionManager
[第九章] Spring的事务 之 9.2 事务管理器 ——跟我学spring3 http://sishuok@com/forum/blogPost/list/0/2503.html
- dtv_driver.ko
替换dtv_driver.ko .步骤: shell@android:/ # get_rootfs.sh ...
- iOS 日历类(NSCalendar)
对于时间的操作在开发中很常见,但有时候我们需要获取到一年后的时间,或者一周后的时间.靠通过秒数计算是不行的.那就牵扯到另外一个日历类(NSCalendar).下面先简单看一下 NSDate let d ...
- JQ实现3D拖拽效果
<!DOCTYPE HTML> <html onselectstart='return false'> <head> <meta http-equiv=&qu ...
- js 转化类似这样的时间( /Date(1389060261000)/)问题
首先在你的js文件里添加这段代码: /** * 日期时间格式化方法, * 可以格式化年.月.日.时.分.秒.周 **/ Date.prototype.Format = function (format ...