bzoj3505
ans=C((n+1)*(m+1),3)-三点一线的情况
横线竖线我们可以先去掉
然后考虑斜线,由于对称性我们只要考虑斜率大于0的即可
有一个很显然的结论,但两点坐标差为x,y时,这条线段上的点数为gcd(x,y)
我们设左下角点为(0,0),则两端点坐标差为x,y的线段有(n-x+1)*(m-y+1)
要注意同在一条直线上不能重复计算,我们考虑线段更容易一点
所以,对于每条线段,三点一线的情况为除去两端点的线段上点数
var i,j,n,m:longint;
ans,tmp:int64;
function calc(x:int64):int64;
begin
exit(x*(x-)*(x-) div );
end; function gcd(a,b:longint):longint;
begin
if b= then exit(a)
else exit(gcd(b,a mod b));
end; begin
readln(n,m);
ans:=calc((n+)*(m+))-(n+)*calc(m+)-(m+)*calc(n+);
for i:= to n do
for j:= to m do
begin
tmp:=gcd(i,j)+;
if tmp> then
ans:=ans-*(n-i+)*(m-j+)*(tmp-);
end;
writeln(ans);
end.
bzoj3505的更多相关文章
- 【bzoj3505】 Cqoi2014—数三角形
http://www.lydsy.com/JudgeOnline/problem.php?id=3505 (题目链接) 题意 给定一个n*m的网格,请计算三点都在格点上的三角形共有多少个. Solut ...
- 【排列组合】bzoj3505 [Cqoi2014]数三角形
http://blog.csdn.net/zhb1997/article/details/38474795 #include<cstdio> #include<algorithm&g ...
- BZOJ3505 CQOI2014数三角形(组合数学)
显然可以用总方案数减掉三点共线的情况.对于三点共线,一个暴力的做法是枚举起点终点,其间整点数量即为横纵坐标差的gcd-1.这样显然会T,注意到起点终点所形成的线段在哪个位置是没有区别的,于是枚举线段算 ...
- 【BZOJ3505】[Cqoi2014]数三角形 组合数
[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...
- 【bzoj3505】[Cqoi2014]数三角形
[bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角 ...
- [bzoj3505][CQOI2014]数三角形_组合数学
数三角形 bzoj-3505 CQOI-2014 题目大意:给你一个n*m的网格图,问你从中选取三个点,能构成三角形的个数. 注释:$1\le n,m\le 1000$. 想法:本来是想着等中考完了之 ...
- 「BZOJ3505」[CQOI2014] 数三角形
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不 ...
- BZOJ3505 [Cqoi2014]数三角形
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 【组合&取补集】数三角形 @CQOI2014/BZOJ3505/upcexam3843
http://exam.upc.edu.cn/problem.php?id=3843&csrf=8oK86t2oHSgi3Q4SX3qOJGeENe6pfXri 时间限制: 1 Sec 内存限 ...
随机推荐
- 关于struts2中action请求会执行两次的问题
关于struts2中action请求会执行两次的问题 在struts2中发现,调用action中的方法,方法会被执行两次,后来发现调用的方法是get开头的,把它改为其他名称开头的后,就不会执行 ...
- nginx php7 配置 备用
yum install epel-* -y yum install -y wget unzip gcc gcc-c++ make zlib zlib-devel pcre pcre-devel lib ...
- Javascript绝句欣赏
1. 取整同时转成数值型: '10.567890'|0 结果: 10 '10.567890'^0 结果: 10 -2.23456789|0 结果: -2 ~~-2.23456789 结果: -2 2. ...
- 第三篇:python基础之编码问题
python基础之编码问题 python基础之编码问题 本节内容 字符串编码问题由来 字符串编码解决方案 1.字符串编码问题由来 由于字符串编码是从ascii--->unicode---&g ...
- Python之路【第五篇】:面向对象和相关
Python之路[第五篇]:面向对象及相关 面向对象基础 基础内容介绍详见一下两篇博文: 面向对象初级篇 面向对象进阶篇 其他相关 一.isinstance(obj, cls) 检查是否obj是否 ...
- OSI七层模型理解
物理层功能1,为数据端设备提供传送数据的通路 功能2,传输数据 接口.传输介质.信号的传输.网络设备 有线介质:双绞线(普通的网线),光纤. 无线介质:无线电.微波.激光.红外线. 例如手机.电视接收 ...
- List转xml
1. List<Model> list = new List<Model>(); Model zj = new Model(); zj.id = ; zj.name = &qu ...
- asp.net模态窗口返回值
个人感觉模态窗口在做网站的时候,使用到的比较少,前段时间在做项目时要实现以模态窗口传值和接收返回值, 模态窗口传值实现比较简单,但是做好后发现在Chrome浏览器中接收不到返回值,修改好Chrome浏 ...
- angularjs-ngTable select filter
jsp <td title="'Status'" filter="{status: 'select'}" filter-data="fn.sta ...
- css-3列布局
三列布局的步骤是,先定义左右两侧,然后定义中间,并设置'中间'部分的'margin'属性.并且'中间'部分不用设置'width'.例如: <!DOCTYPE html PUBLIC " ...