POJ-3261-Milk Patterns(后缀数组)
题意:
给定一个字符串,求至少出现k 次的最长重复子串,这k 个子串可以重叠。
分析:
先二分答案,然后将后缀分成若干组。
不同的是,这里要判断的是有没有一个组的后缀个数不小于k。
如果有,那么存在k 个相同的子串满足条件,否则不存在。这个做法的时间复杂度为O(nlogn)。
// File Name: 3261.cpp
// Author: Zlbing
// Created Time: 2013年09月04日 星期三 21时21分51秒 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
//rank从0开始
//sa从1开始,因为最后一个字符(最小的)排在第0位
//height从2开始,因为表示的是sa[i-1]和sa[i]
const int MAXN=1e6+;
int rank[MAXN],sa[MAXN],X[MAXN],Y[MAXN],height[MAXN],s[MAXN];
int buc[MAXN];
void calheight(int n) {
int i , j , k = ;
for(i = ; i <= n ; i++) rank[sa[i]] = i;
for(i = ; i < n ; height[rank[i++]] = k)
for(k?k--: , j = sa[rank[i]-] ; s[i+k] == s[j+k] ; k++);
}
bool cmp(int *r,int a,int b,int l) {
return (r[a] == r[b] && r[a+l] == r[b+l]);
}
void suffix(int n,int m = ) {
int i , l , p , *x = X , *y = Y;
for(i = ; i < m ; i ++) buc[i] = ;
for(i = ; i < n ; i ++) buc[ x[i] = s[i] ] ++;
for(i = ; i < m ; i ++) buc[i] += buc[i-];
for(i = n - ; i >= ; i --) sa[ --buc[ x[i] ]] = i;
for(l = ,p = ; p < n ; m = p , l *= ) {
p = ;
for(i = n-l ; i < n ; i ++) y[p++] = i;
for(i = ; i < n ; i ++) if(sa[i] >= l) y[p++] = sa[i] - l;
for(i = ; i < m ; i ++) buc[i] = ;
for(i = ; i < n ; i ++) buc[ x[y[i]] ] ++;
for(i = ; i < m ; i ++) buc[i] += buc[i-];
for(i = n - ; i >= ; i --) sa[ --buc[ x[y[i]] ] ] = y[i];
for(swap(x,y) , x[sa[]] = , i = , p = ; i < n ; i ++)
x[ sa[i] ] = cmp(y,sa[i-],sa[i],l) ? p- : p++;
}
calheight(n-);//后缀数组关键是求出height,所以求sa的时候顺便把rank和height求出来
}
int n,k;
bool judge(int x)
{
int cnt=;
for(int i=;i<=n;i++)
{
if(height[i]>=x)
cnt++;
else cnt=;
if(cnt>=k)
return true;
}
return false;
}
int main() {
while(~scanf("%d%d",&n,&k))
{
REP(i,,n-)
scanf("%d",&s[i]);
REP(i,,n-)s[i]++;
s[n]=;
suffix(n+,);
int l=,r=n,mid;
int ans=-;
while(l<=r)
{
mid=l+(r-l+)/;
if(judge(mid))
{
ans=max(mid,ans);
l=mid+;
}
else r=mid-;
}
printf("%d\n",ans);
} return ;
}
POJ-3261-Milk Patterns(后缀数组)的更多相关文章
- Poj 3261 Milk Patterns(后缀数组+二分答案)
Milk Patterns Case Time Limit: 2000MS Description Farmer John has noticed that the quality of milk g ...
- POJ 3261 Milk Patterns 后缀数组求 一个串种 最长可重复子串重复至少k次
Milk Patterns Description Farmer John has noticed that the quality of milk given by his cows varie ...
- POJ 3261 Milk Patterns(后缀数组+单调队列)
题意 找出出现k次的可重叠的最长子串的长度 题解 用后缀数组. 然后求出heigth数组. 跑单调队列就行了.找出每k个数中最小的数的最大值.就是个滑动窗口啊 (不知道为什么有人写二分,其实写啥都差不 ...
- POJ 3261 Milk Patterns ( 后缀数组 && 出现k次最长可重叠子串长度 )
题意 : 给出一个长度为 N 的序列,再给出一个 K 要求求出出现了至少 K 次的最长可重叠子串的长度 分析 : 后缀数组套路题,思路是二分长度再对于每一个长度进行判断,判断过程就是对于 Height ...
- poj 3261 Milk Patterns 后缀数组 + 二分
题目链接 题目描述 给定一个字符串,求至少出现 \(k\) 次的最长重复子串,这 \(k\) 个子串可以重叠. 思路 二分 子串长度,据其将 \(h\) 数组 分组,判断是否存在一组其大小 \(\ge ...
- POJ 3261 Milk Patterns (求可重叠的k次最长重复子串)+后缀数组模板
Milk Patterns Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7586 Accepted: 3448 Cas ...
- POJ 3261 Milk Patterns 【后缀数组 最长可重叠子串】
题目题目:http://poj.org/problem?id=3261 Milk Patterns Time Limit: 5000MS Memory Limit: 65536K Total Subm ...
- poj3261 Milk Patterns 后缀数组求可重叠的k次最长重复子串
题目链接:http://poj.org/problem?id=3261 思路: 后缀数组的很好的一道入门题目 先利用模板求出sa数组和height数组 然后二分答案(即对于可能出现的重复长度进行二分) ...
- poj 3261 Milk Patterns(后缀数组)(k次的最长重复子串)
Milk Patterns Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7938 Accepted: 3598 Cas ...
- POJ 3261 Milk Patterns(后缀数组+二分答案)
[题目链接] http://poj.org/problem?id=3261 [题目大意] 求最长可允许重叠的出现次数不小于k的子串. [题解] 对原串做一遍后缀数组,二分子串长度x,将前缀相同长度超过 ...
随机推荐
- MVC+MEF+UnitOfWork+EF架构,网站速度慢的原因总结!(附加ANTS Memory Profiler简单用法)
(最近使用内存分析工具ANTS Memory Profiler,以及其他网友提供的意见发现最终导致内存泄漏的就是MEF,在此特地更新下,与大家分享!最下面红色字体) 最近参考使用了郭明峰的一套架构来做 ...
- Java-Hirbernate小结大纲
Hibernate Hibernate是一个开放源代码的对象关系映射框架 Hibernate的核心接口一共有6个,分别为:Session.SessionFactory.Transaction.Quer ...
- PHP 解决时差8小时的问题
有时候用php echo date("Y-m-d H:i:s")的时候会发现自己的时间和系统时间有差别 这里问题一般就是因为你自己的时区和配置的时区出现了差别的原因: 解决办法有三 ...
- PetaPoco 增删改查
1 查询单行 DBInstance.DB.SingleOrDefault<CompanyInfo11>(id); /// <summary> /// 根据id获取公司信息 // ...
- LaTeX 中插入数学公式
一.常用的数学符号 1.小写希腊字母 \alpha \nu \beta \xi \gamma o \delta \pi \epsilon \rho \zeta \sigma \eta \tau \th ...
- 完全卸载oracle
今天在网上看到有位网友写的篇日志,感觉蛮好的,一般卸载oracle有4个地方需求注意:1)Services,2)software,3eventlog,4)path. 1.关闭 oracle 所有的服务 ...
- recursive - simple screenshot but detail principle.
the code below demonstates the principle of the'recursive-call' that the programing beginner may be ...
- 在ASP中调用DLL的方法
.net的dll已经不是严格意义上的动态连接库了,而是一个类或者类库.它是不能直接在ASP.VB等其它的应用环境中使用的. 我们可以通过COM包装器(COM callable wrapper (C ...
- [转帖]vivado & VS2013工具
来源:http://bbs.csdn.net/topics/380057699 添加OpenCV库后,MFC在Debug模式下调试,提示应用程序无法正常启动(0xc000007b). 解决方法:在环境 ...
- 段落排版--行间距, 行高(line-height)
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...