前言

在分布式消息队列系统中,Kafka 的无锁设计是其高吞吐量和高并发的核心优势之一。通过避免锁的竞争,Kafka 能够在高并发和大规模的生产环境中保持高效的性能。为了更好地理解 Kafka 的无锁设计,我们首先对比传统的队列模型,然后探讨 Kafka 如何通过无锁机制优化生产者和消费者之间的工作。

【应用级】多生产者,多消费者的队列是怎样的?

1)有锁的可变队列

在传统的队列模型中,生产者和消费者必须争抢锁来读写队列的数据:

  • 生产者 在获得锁后将消息插入队列。
  • 消费者 在获得锁后从队列中拉取消息。

为什么要用锁呢?用锁的目的是保护数据,防止数据被错误覆盖。

然而,在高并发场景下,锁竞争成为了一个瓶颈,尤其是在生产者和消费者数量庞大的情况下,锁竞争会显著影响队列的性能和吞吐量。

2)无锁的环形队列

在 Java 的 Disruptor 框架中,使用了性能优越的 RingBuffer(环形队列)作为存储结构。与传统队列不同,RingBuffer 在初始化时就预分配了内存空间,生产者和消费者通过读写指针来控制数据的读写位置

与上面的队列不同,这里的读操作不修改队列,仅修改指针

  • 生产者:Disruptor推荐使用单生产者模式,这种性能最高。如果要使用多生产者模式,多个生产者需要通过CAS(Compare-And-Swap)来判断是否获得队列序号,进而修改队列。
  • 消费者:单消费者模式,需要CAS竞争读指针序号。多消费模式,则维护各自的读指针,避免了竞争

Kafka 生产者如何实现无锁设计?

Kafka 生产者通过以下几种方式避免了锁的竞争,确保了高效的数据写入:

1)追加写入(Append-Only)

Kafka 的队列采用文件追加的方式来写入数据,这意味着每次数据写入都直接附加到文件末尾,而无需修改文件中的任何现有区域。这种设计避免了写入区域的竞争,也没有锁竞争的问题。即使有锁,也只是写锁,而文件追加操作本身是操作系统级别的原子操作,性能非常高。

2)批量提交
Kafka 生产者将多条消息批量打包成一个批次,并将整个批次作为一个单位提交到 Kafka Broker。通过批量提交,生产者无需为每条消息单独等待响应,这大大减少了锁竞争和网络延迟,从而显著提高了整体的吞吐量。

Kafka 消费者如何实现无锁设计?

Kafka 的消费者设计也遵循无锁的原则,具体体现在以下几个方面:

1)分区独占
每个 Kafka 分区 只能由同一个 消费组 内的一个消费者处理。这样,同一消费者组内的消费者不会发生资源竞争,每个消费者只需处理自己分配到的分区数据,避免了多个消费者间的干扰。

2)只读消费和偏移量管理

Kafka 消费者从 Broker 拉取数据后,只进行读取操作,不对数据进行修改。每个消费者维护自己的消费进度(即 偏移量),并在成功处理消息后提交偏移量。由于消费者不修改数据内容,他们之间不会互相干扰,也不需要竞争对数据的锁。不同消费者组之间会各自维护各自的消费进度,避免了相互之间的竞争。

总结

Kafka 的无锁设计通过多个机制有效避免了锁竞争,从而提升了系统的吞吐量和并发能力。通过批量提交、追加写入和分区独占等设计,Kafka 能够在高并发的环境中提供极高的性能。而消费者设计中的只读消费和偏移量管理,进一步优化了数据的读取效率,避免了无谓的竞争和资源浪费。这些无锁设计是 Kafka 高效、可靠的基础,确保它能够在大规模分布式环境中运行良好。

【杂谈】Kafka的无锁设计的更多相关文章

  1. 图解kubernetes scheduler基于map/reduce无锁设计的优选计算

    优选阶段通过分离计算对象来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来 ...

  2. 高性能无锁队列 Disruptor 初体验

    原文地址: haifeiWu和他朋友们的博客 博客地址:www.hchstudio.cn 欢迎转载,转载请注明作者及出处,谢谢! 最近一直在研究队列的一些问题,今天楼主要分享一个高性能的队列 Disr ...

  3. 如何在高并发环境下设计出无锁的数据库操作(Java版本)

    一个在线2k的游戏,每秒钟并发都吓死人.传统的hibernate直接插库基本上是不可行的.我就一步步推导出一个无锁的数据库操作. 1. 并发中如何无锁. 一个很简单的思路,把并发转化成为单线程.Jav ...

  4. MySQL 8.0:无锁可扩展的 WAL 设计

    这篇文章整理自MySQL官方文档,介绍了8.0在预写式日志上实现上的修改,观点总结如下: 在8.0以前,为了保证flush list的顺序,redo log buffer写入过程需要加锁,无法实现并行 ...

  5. EasyDarwin开源流媒体服务器高性能设计之无锁队列

    本文来自EasyDarwin团队Fantasy(fantasy(at)easydarwin.org) 一. EasyDarwin任务队列实现 EasyDarwin的任务队列是通过OSQueue类来组织 ...

  6. [转]透过 Linux 内核看无锁编程

    非阻塞型同步 (Non-blocking Synchronization) 简介 如何正确有效的保护共享数据是编写并行程序必须面临的一个难题,通常的手段就是同步.同步可分为阻塞型同步(Blocking ...

  7. 非阻塞同步算法与CAS(Compare and Swap)无锁算法

    锁(lock)的代价 锁是用来做并发最简单的方式,当然其代价也是最高的.内核态的锁的时候需要操作系统进行一次上下文切换,加锁.释放锁会导致比较多的上下文切换和调度延时,等待锁的线程会被挂起直至锁释放. ...

  8. paip.提升性能----java 无锁结构(CAS, Atomic, Threadlocal, volatile, 函数式编码, 不变对象)

    paip.提升性能----java 无锁结构(CAS, Atomic, Threadlocal, volatile, 函数式编码, 不变对象) 1     锁的缺点 2     CAS(Compare ...

  9. Nah Lock: 一个无锁的内存分配器

    概述 我实现了两个完全无锁的内存分配器:_nalloc 和 nalloc.  我用benchmark工具对它们进行了一组综合性测试,并比较了它们的指标值. 与libc(glibc malloc)相比, ...

  10. zeromq源码分析笔记之无锁队列ypipe_t(3)

    在上一篇中说到了mailbox_t的底层实际上使用了管道ypipe_t来存储命令.而ypipe_t实质上是一个无锁队列,其底层使用了yqueue_t队列,ypipe_t是对yueue_t的再包装,所以 ...

随机推荐

  1. iOS中RunLoop和线程的关系

    RunLoop又叫运行循环,主要用来管理线程.一个线程对应一个RunLoop,一个RunLoop又有五种模式.只有主线程的RunLoop是默认开启的,所以程序在开启后,会一直运行,不会退出.其他线程的 ...

  2. js 时间日期

    Date.parse()  把字符串时间转化为时间戳. new Date(时间戳) 转化 时间格式 时间比较大小

  3. nestjs 中管道的使用-验证DTO

    1. 安装管道 nest g pi role 意思是安装一个role模块的管道 2. 在controller中使用管道 管道的作用: 1. 数据的转换 2. DTO规则验证 一般使用全局配置管道 区别 ...

  4. KubeSphere 社区双周报|2024.06.21-07.04

    KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书.新增的讲师证书以及两周内提交过 commit 的贡献者,并对近期重要的 PR 进行解析,同时还包含了线上/线下活动和布道推广等一系列 ...

  5. 使用 KubeSphere 部署高可用 RocketMQ 集群

    作者:老Z,云原生爱好者,目前专注于云原生运维,KubeSphere Ambassador. Spring Cloud Alibaba 全家桶之 RocketMQ 是一款典型的分布式架构下的消息中间件 ...

  6. 一次彻底讲清如何处理mysql 的死锁问题

    MySQL 死锁 是指两个或多个事务互相等待对方持有的锁,从而导致所有事务都无法继续执行的现象.在 InnoDB 存储引擎中,死锁是通过锁机制产生的,特别是在并发较高.业务逻辑复杂的情况下,更容易发生 ...

  7. vi指令总结

    VI常用技巧 ​ VI命令可以说是Unix/Linux世界里最常用的编辑文件的命令了,但是因为它的命令集众多,很多人都不习惯使用它,其实您只需要掌握基本命令,然后加以灵活运用,就会发现它的优势,并会逐 ...

  8. Nuget包本地调试以及自动打包上传

    项目过程中,经常需要打包Nuget包,并且引用本地Nuget包调试,完成后上传,因此做了点配置,分享给大家.如果大家有更好的方法欢迎分享. 1. 使用生成后事件自动打包 项目文件中本身是可以配置生成时 ...

  9. 一文彻底弄懂Java的IO操作

    Java 的 IO(输入/输出)操作是处理数据流的关键部分,涉及到文件.网络等多种数据源.以下将深入探讨 Java IO 的不同类型.底层实现原理.使用场景以及性能优化策略. 1. Java IO 的 ...

  10. [Apache Doris] Apache Doris 架构及代码目录解读

    一.系统架构 Doris是一个MPP的OLAP系统,主要整合了Google Mesa(数据模型),Apache Impala(MPP Query Engine)和Apache ORCFile (存储格 ...