CF1503E 2-Coloring
CF1503E 2-Coloring
cjx 组合强。
思路
观察一下题目,不难发现只有当黄色形成如下的单峰时才合法。
(染错色了,将就一下)

其中两座峰的峰顶高度相加等于 \(m\),为了方便统计,我们钦定右边的峰一定在左峰下方的行出现,最后答案乘以二就是最终方案。
发现对于每一边是两个最长不下降子序列拼在一起。
设 \(f[i][j]\) 为长度为 \(i\) 的最长不下降子序列,最高点高度为 \(j\) 的方案数。
再设 \(f'[i][j]\) 为长度为 \(i\) 的最长不下降子序列,仅有一个最高点为 \(j\) 的方案数。
答案就是
\]
相当于枚举第一个峰在行 \(i\),第二个峰在行 \(j\),第一个峰高度为 \(k\)。
变幻一下:
\]
这样给后一个和式做一个后缀和优化,即可把复杂度优化到 \(O(n^2)\) 级别。
当然有例外是这个样子。

两峰交在一起(必须保证在连续的行且峰顶高度相加大于 \(m\)),也是一种方案。
\]
相当于枚举左边的峰顶在行 \(i\),左峰高度为 \(x\),右峰高度为 \(y\),同时求和了峰过后的一段不下降子序列的方案。
\]
对于 \(\sum_{k=1}^{x-1}f[i][k]\) 和 \(\sum_{k=1}^{y-1} f[n-i][k]\) 前缀和优化。
然后预处理出所有的
\]
再次前缀和。
即可在 \(O(n^2)\) 的时间内求出上述和式。
对于 \(f\) 和 \(f'\) 的转移是容易的。
\]
\]
初始值 \(f[0][0]=1\)。
其实你看到这里,已经可以使用 dp 做出本题了,但是如果你想进一步了解组合,请移步。
不难发现,我们每次的转移都相当于求一次前缀和,而 \(f[0][0]=1\)。
所以有可以构造这样的生成函数:
\]
观察 \(\sum_{i=0} x^i\) 的优雅性质,你会发现 \(1\times \sum_{i=0} x^i\) 相当于求一次前缀和。
而 \((\sum_{i=0} x^i)^2\) 相当于求两次前缀和(\(x^i\) 的系数是第 \(i\) 项的求前缀和后的值)。
由 \(f[0]\) 转移到 \(f[1]\) 的过程相当于乘以 \(\sum_{i=0} x^i\)(一次前缀和),所以有:
\]
推广一下,每次 \(f[i]\) 向 \(f[i+1]\) 的转移都是乘以 \(\sum_{i=0} x^i\)(每转移一次求一次前缀和),所以有:
\]
对于 \(\sum_{i=0} x^i\),的封闭形式为 \((1-x)^{-1}\) 有很多种方法求,这里不再赘述。
所以有:
\]
使用广义二项式展开 \((1+(-x))^{-i}\),即可得到第 \(j\) 项的系数为:
\]
关于牛顿二项式系数,已经有完备的公式,本处直接套公式即可,故不再展开讨论。
把系数乘上 \((-x)^j\),有
\]
从比较简单的组合意义考虑,有 \(j\) 个球,有 \(i-1\) 个挡板,可以为空,两个挡板之间的球数相当于相邻两项的差。
那么有:
\]
在观察一下 \(f'\) 求值的式子,你会发现 \(f'[i][j]=f[i][j-1]\)。
所以其实你也求出 \(f'\) 的组合意义了。
相当于有 \(j\) 个球,\(i-1\) 个挡板,最后一个挡板至少挡一个球,那么就可以投入 \(j-1\) 个球供所有挡板挡。
\]
如果考虑生成函数的话,\(f'[i][j]\) 相当于较 \(f[i][j]\) 向后平移了一个位置,那么可以写成:
\]
或
\]
于是你就可以 愉快 的 AC 本题了。
CODE
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 5000
#define mod 998244353
const int maxn=5e3+5;
ll n,m,ans;
ll fac[maxn],inv[maxn],f[maxn];
inline ll ksm(ll x,ll y)
{
ll sum=1;
for(;y;y/=2,x=x*x%mod) if(y&1) sum=sum*x%mod;
return sum;
}
inline ll C(int n,int m)
{
if(n<m||m<0) return 0;
return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
freopen("magic.in","r",stdin);
freopen("magic.out","w",stdout);
for(int i=fac[0]=1;i<=N;i++) fac[i]=fac[i-1]*i%mod;
inv[N]=ksm(fac[N],mod-2);
for(int i=N-1;~i;i--) inv[i]=inv[i+1]*(i+1)%mod;
scanf("%lld%lld",&n,&m);
for(int h=1;h<n;h++)
{
for(int j=m;j>=2;j--)
{
f[j]=(1LL*f[j+1]+1LL*C(j+n-h-2,n-h-1)*C(m-j+n-h,n-h)%mod)%mod;
}
for(int i=m-1;i>=1;i--)
{
ans = (1LL*ans+1LL*C(i+h-1,h)*C(m-i+1+h-2,h-1)%mod*f[i+1]%mod)%mod;
}
}
memset(f,0,sizeof(f));
for(int x=1;x<=m;x++)
{
for(int j=n-1;j>=1;j--)
{
f[j]=(1LL*f[j+1]+1LL*C(m-x+n-j-1,n-j-1)*C(m-x+j-1,j)%mod)%mod;
}
for(int i=1;i<n;i++)
{
ans=(1LL*ans+1LL*C(x+i-1,i)*C(x+n-i-1,n-i-1)%mod*f[n-i+1]%mod)%mod;
}
}
printf("%lld\n",ans*2%mod);
}
CF1503E 2-Coloring的更多相关文章
- Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)
题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees DP
C. Coloring Trees ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...
- CodeForces #369 C. Coloring Trees DP
题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少. K:连续的颜色为一组 ...
- CodeForces 149D Coloring Brackets
Coloring Brackets time limit per test: 2 seconds memory limit per test: 256 megabytes input: standar ...
- C. Coloring Trees DP
传送门:http://codeforces.com/problemset/problem/711/C 题目: C. Coloring Trees time limit per test 2 secon ...
- codeforces 711C C. Coloring Trees(dp)
题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- POJ 1419 Graph Coloring(最大独立集/补图的最大团)
Graph Coloring Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4893 Accepted: 2271 ...
- URAL 1080 Map Coloring(染色)
Map Coloring Time limit: 1.0 secondMemory limit: 64 MB We consider a geographical map with N countri ...
- POJ1419 Graph Coloring(最大独立集)(最大团)
Graph Coloring Time Limit: 1000MS Memor ...
随机推荐
- C# WebSocket高并发通信阻塞问题
项目上遇到使用WebSocket超时问题,具体情况是这样的,OTA升级过程中,解压zip文件会有解压进度事件,将解压进度通过进程通信传给另一进程,通信提示超时异常 小伙伴堂园发现大文件使用Zip解压, ...
- 使用 Performance API 实现前端资源监控
1. Performance API 的用处 Performance API 是浏览器中内置的一组工具,用于测量和记录页面加载和执行过程中的各类性能指标.它的主要用处包括: 监控页面资源加载:跟踪页面 ...
- APP专项测试之兼容性测试
1.APP 兼容性测试认识 随着 APP 应用范围越来越广,用户群体越来越大,终端设备的型号也越来越多,移动终端碎片化加剧,使得 APP 兼容性测试成为测试质量保障必须要考虑的环节. APP 兼容性测 ...
- QT框架实现自定义形状截图效果
文章目录 QT框架普通截图运行效果 QT框架系统级热键的原理 注册热键 反注册热键 获取系统级唯一的整数ID 删除系统级唯一整数ID 原生事件过滤器 QT框架截图的原理 截图窗口 拉框操作 系统剪切板 ...
- 递归获取zip中的文件
1 //tempPath 系统临时文件夹 2 2 private List<String> getWsContentList(String tempPath) { 3 3 //wsFile ...
- 一次基于AST的大规模代码迁移实践
作者:来自 vivo 互联网大前端团队- Wei Xing 在研发项目过程中,我们经常会遇到技术架构迭代更新的需求,通过技术的迭代更新,让项目从新的技术特性中受益,但由于很多新的技术迭代版本并不能完全 ...
- JVM 系列知识体系全面回顾
经过几个月的努力,JVM 知识体系终于梳理完成了. 很早之前也和小伙伴们分享过 JVM 相关的技术知识,再次感谢大家支持和反馈. 最后再次献上 JVM系列文章合集索引,感兴趣的小伙伴可以点击查看. J ...
- 2023年3月中国数据库排行榜:开源OTO揽获前三,传统达梦、GBase触机便发
东风何时至,已绿湖上山. 春风送来了2023年3月的 墨天轮中国数据库流行度排行,本月共有260个数据库参与排名,本月榜单前十可以用一句话概括为:榜单前八较上月岿然不动,GBase 奋勇向前重返第九. ...
- .Net 理解异步的学习
// 异步 - 在方法中使用 // 异步约等于线程 async await 一起使用 // 异步只有三种返回值 // 1. Task // 2. Task<T> // 3. void 几乎 ...
- query和params的区别
2者都是编程式路由跳转用来存放传递数据的位置,query使用path引入,数据显示在地址栏上,params使用name引入,传递的数据在页面看不见 :