在初始概念篇中,我们简单提到了时间序列由趋势、周期性、季节性、误差构成,本文将介绍如何将时间序列的这些成分分解出来。分解的使用场景有很多,比如当我们需要计算该时间序列是否具有季节性,或者我们要去除该时间序列的趋势和季节性,让时间序列变得平稳时都会用到时间序列分解。

加法和乘法时间序列

时间序列的各个观测值可以是以上成分相加或相乘得到:

Value = Trend + Seasonality + Error

Value = Trend * Seasonality * Error

分解

下面的代码展示了如何用python从时间序列中分解出相应的成分:

from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse # Import Data
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date') # Multiplicative Decomposition
result_mul = seasonal_decompose(df['value'], model='multiplicative', extrapolate_trend='freq') # Additive Decomposition
result_add = seasonal_decompose(df['value'], model='additive', extrapolate_trend='freq') # Plot
plt.rcParams.update({'figure.figsize': (10,10)})
result_mul.plot().suptitle('Multiplicative Decompose', fontsize=22)
result_add.plot().suptitle('Additive Decompose', fontsize=22)
plt.show() # Extract the Components ----# Actual Values = Product of (Seasonal * Trend * Resid)
df_reconstructed = pd.concat([result_mul.seasonal, result_mul.trend, result_mul.resid, result_mul.observed], axis=1)
df_reconstructed.columns = ['seas', 'trend', 'resid', 'actual_values']
df_reconstructed.head()

对比上面的加法分解和乘法分解可以看到,加法分解的残差图中有一些季节性成分没有被分解出去,而乘法相对而言随机多了(越随机意味着留有的成分越少),所以对于当前时间序列来说,乘法分解更适合。

小结

时间序列分解不仅可以让我们更清晰的了解序列的特性,有时候人们还会用分解出的残差序列(误差)代替原始序列来做预测,因为原始时间序列一般是非平稳序列,而这个残差序列是平稳序列,有助于我们做出更好的预测,当然预测后的序列还要加回或乘回趋势成分和季节性成分,平稳序列的具体内容将在下一篇文章中介绍。

ok,本篇就这么多内容啦~,感谢阅读O(∩_∩)O。

用python做时间序列预测三:时间序列分解的更多相关文章

  1. python做中学(三)条件编译的用法

    C代码中经常使用条件编译,python中该怎么用呢?Python没有像C或C或Java甚至Java一样编译,python文件被“即时”编译,您可以将其视为类似于Basic或Perl的解释语言 只需使用 ...

  2. 用python做时间序列预测九:ARIMA模型简介

    本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving ...

  3. 用python做时间序列预测一:初识概念

    利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况.比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的. 什么是时间序列? 时间序列,是指同一个变量在连续且固定的时 ...

  4. Python中利用LSTM模型进行时间序列预测分析

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...

  5. 基于 Keras 用 LSTM 网络做时间序列预测

    目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...

  6. 《利用python进行数据分析》读书笔记--第十章 时间序列(三)

    7.时间序列绘图 pandas时间序列的绘图功能在日期格式化方面比matplotlib原生的要好. #-*- coding:utf-8 -*- import numpy as np import pa ...

  7. facebook开源的prophet时间序列预测工具---识别多种周期性、趋势性(线性,logistic)、节假日效应,以及部分异常值

    简单使用 代码如下 这是官网的quickstart的内容,csv文件也可以下到,这个入门以后后面调试加入其它参数就很简单了. import pandas as pd import numpy as n ...

  8. (数据科学学习手札40)tensorflow实现LSTM时间序列预测

    一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...

  9. 腾讯技术工程 | 基于Prophet的时间序列预测

    预测未来永远是一件让人兴奋而又神奇的事.为此,人们研究了许多时间序列预测模型.然而,大部分的时间序列模型都因为预测的问题过于复杂而效果不理想.这是因为时间序列预测不光需要大量的统计知识,更重要的是它需 ...

  10. Kesci: Keras 实现 LSTM——时间序列预测

    博主之前参与的一个科研项目是用 LSTM 结合 Attention 机制依据作物生长期内气象环境因素预测作物产量.本篇博客将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测. ...

随机推荐

  1. AI工具推荐——Cherry Studio

    Cherry Studio介绍 Cherry Studio是一款支持多模型服务的 Windows/macOS GPT 客户端. 它的主要特点如下: 多样化的大型语言模型提供商支持 ️ 主要的大型语言模 ...

  2. 原创单总线传输协议b2s (附全部verilog源码)

    一.b2s协议背景介绍 本单总线传输协议为精橙FPGA团队原创,含传送端(transmitter)和接收端(receiver)两部分,基于verilog语言,仅使用单个I/O口进行多位数据的传输,传输 ...

  3. Windows系统安装使用Scoop包管理器

        前言 Scoop是Windows的命令行安装程序. 如果用过Linux系统,使用apt-get工具安装过软件,或者用过Python,知道pip工具用于管理Python各种依赖包,那么理解Sco ...

  4. vscode 你想要的配置

    配置用户代码片段 文件 → 首选项 → 配置用户代码片段 比如配置一个vue3的代码片段: { "vue3-code": { "prefix": "v ...

  5. OpenTelemetry.NET API

    OpenTelemetry.NET API Status and Releases Tracing Metrics Logging 1.0 Alpha Beta 安装 dotnet add packa ...

  6. OpenType 字体文件组织结构

    OpenType 字体文件结构 OpenType 字体的组织 https://docs.microsoft.com/en-us/typography/opentype/spec/otff#organi ...

  7. rabbitmq3.7.3 发布了一个新的 exchange x-random

    direct exchange 同一个 routing key 可以绑定多个 queue,当给这个routing key发消息时,所有 queue 都会投递.这个行为对于一些场景不适用,有时我们希望只 ...

  8. kubectl get deploy

    for i in `kubectl get deployments.apps -n nvpc-apps-02|grep -v NAME|awk '{print $1}'`; do kubectl ge ...

  9. 使用OpenSSL创建生成CA证书、服务器、客户端证书及密钥

    说明: 对于SSL单向认证:服务器需要CA证书.server证书.server私钥,客户端需要CA证. 对于SSL双向认证:服务器需要CA证书.server证书.server私钥,客户端需要CA证书, ...

  10. gitlab-runner register

    [root@g ~]# gitlab-runner register Runtime platform arch=amd64 os=linux pid=23614 revision=ac8e767a ...