题意:

给定一个无向图,边权为 \([0,1]\) 之间的随机变量。求图最小生成树最大边权的期望。

\(n\le 10\)。

Soluion:

Meatherm口诏:我都不知道这个东西怎么想出来的

针对这道题,好像正常的方法是转计数然后斯特林反演+dp。但是如果想到概率理论,你就已经赢了

很遗憾,我没想出来

设最大边权随机变量为 \(X\)。其概率分布函数 \(P(t)=P(X\ge t)\),概率密度函数 \(p(t)\)。

其实这道题已经做完了

易知

\[EX=\int_0^{\infty}P(t)dt=\int_0^1P(t)dt
\]

接下来考虑这个东西怎么求。首先我们得知道 \(P(t)\) 怎么算。小于 \(t\) 的边不能连通图,那么考虑 \(1\) 所在连通块在使用边权小于 \(t\) 的边不能连通图的概率(这时也就知道了能)。设这个连通块的点集为 \(S(1\in S)\)。类似地,设这个连通块的概率分布函数为 \(P_S(t)\)。

考虑再次枚举此时不连通的"包含 \(1\) 的连通块"的包含 \(1\) 的连通块,设其为 \(S_0\)。不连通的概率就是枚举每个不同的、不等于他自己的包含 \(1\) 的连通块的连通的概率之和。这样相互独立,覆盖了所有情况。那么可以得到:

\[P_S(t)=\sum_{S_0\subset S\\1\in S_0}(1-t)^{cnt(S_0,\overline{S_0})}(1-P_{S_0}(t))
\]

\(cnt\) 是两个点集之间的边计数。这样算的原因:它和它补集之间的点必须不连通(\((1-t)^{cnt(S_0,\overline{S_0})}\)),他自己那里必须连通(\((1-P_{S_0}(t))\))。

考虑对这个东西积分。

\[\int_0^1P_S(t)dt=\int_0^1\sum_{S_0\subset S\\1\in S_0}(1-t)^{cnt(S_0,\overline{S_0})}(1-P_{S_0}(t))dt\\
=\int_0^1\sum_{S_0\subset S\\1\in S_0}(1-t)^{cnt(S_0,\overline{S_0})}dt-\int_0^1\sum_{S_0\subset S\\1\in S_0}(1-t)^{cnt(S_0,\overline{S_0})}P_{S_0}(t)dt\\
\]

我们知道,

\[\int(1-x)^adx=-\frac{(1-x)^{a+1}}{a+1}+C
\]

那么

\[\int_0^1\sum_{S_0\subset S\\1\in S_0}(1-t)^{cnt(S_0,\overline{S_0})}=\sum_{S_0\subset S\\1\in S_0}\frac{1}{cnt(S_0,\overline{S_0})+1}
\]

后面这个东西怎么办?

考虑此积分:

\[\int_0^1(1-t)^kP_S(t)dt\\
=\int_0^1\sum_{S_0\subset S\\1\in S_0}(1-t)^{cnt(S_0,\overline{S_0})+k}(1-P_{S_0}(t))dt\\
=\int_0^1\sum_{S_0\subset S\\1\in S_0}(1-t)^{cnt(S_0,\overline{S_0})+k}dt-\int_0^1\sum_{S_0\subset S\\1\in S_0}(1-t)^{cnt(S_0,\overline{S_0})+k}P_{S_0}(t)dt\\
=\sum_{S_0\subset S\\1\in S_0}\frac{1}{cnt(S_0,\overline{S_0})+k+1}-\int_0^1\sum_{S_0\subset S\\1\in S_0}(1-t)^{cnt(S_0,\overline{S_0})+k}P_{S_0}(t)dt
\]

前面的积分也被化为 \(k=0\) 的形式。

我们希望求 \(S=V,k=0\) 的情况。

显然:

\[\forall k,\int_0^1(1-t)^kP_{\{1\}}(t)dt=0
\]

好啊,现在我们可以递推。时间复杂度 \(O(3^n(n+m))\)。

估计想出来的人也不喜欢 dp。

代码是 trival 的,不超过 1k。

[ZJOI2015] 地震后的幻想乡积分题解的更多相关文章

  1. 【BZOJ3925】[ZJOI2015]地震后的幻想乡(动态规划)

    [BZOJ3925][ZJOI2015]地震后的幻想乡(动态规划) 题面 BZOJ 洛谷 题解 题目里面有一句提示:对于\(n\)个\([0,1]\)之间的随机变量\(x1,x2,...,xn\),第 ...

  2. [ZJOI2015]地震后的幻想乡(期望+dp)

    题目描述 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任务是尽快让幻想 ...

  3. BZOJ3925: [Zjoi2015]地震后的幻想乡

    Description 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任 ...

  4. BZOJ3925: [Zjoi2015]地震后的幻想乡【概率期望+状压DP】

    Description 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任 ...

  5. [bzoj3925] [洛谷P3343] [ZJOI2015] 地震后的幻想乡

    Description 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任 ...

  6. 题解-ZJOI2015地震后的幻想乡

    Problem bzoj & 洛谷 题意简述:给定一个\(n\)(\(n\leq 10\))个点\(m\)条边的无向图,每条边的权值为一个\(0\)到\(1\)之间的连续随机变量,求图的最小生 ...

  7. 【BZOJ 3925】[Zjoi2015]地震后的幻想乡 期望概率dp+状态压缩+图论知识+组合数学

    神™题........ 这道题的提示......(用本苣蒻并不会的积分积出来的)并没有 没有什么卵用 ,所以你发现没有那个东西并不会 不影响你做题 ,然后你就可以推断出来你要求的是我们最晚挑到第几大的 ...

  8. 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)

    题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...

  9. BZOJ 3925: [Zjoi2015]地震后的幻想乡(概率)

    CLJ就是喜欢出ctsc上讲的东西,看来还是得找时间把他的那几道题做下 首先记f(x)为答案>x的概率,那么把这个东西从0到1积分就是答案了 f(x)<=>边小于x不能使图联通的概率 ...

  10. [ZJOI2015]地震后的幻想乡

    题目传送门 SOL:不会积分的我瑟瑟发抖. 所以我选择状压DP. 我们有以下一个dp状态: f[S][i],S表示点集,i表示这个点集向外联了i条边. 那么答案就是f[(1<<n)-1][ ...

随机推荐

  1. 一、FreeRTOS学习笔记-基础知识

    一基础知识 1.任务调度(调度器) 调度器就是使用相关的调度算法来决定当前需要执行的哪个任务 FreeRTOS三种任务调度方式: 1.抢占式调度:主要是针对优先级不同的任务,每个任务都有一个优先级,优 ...

  2. Django+SimpleUI

    1.安装 pip install django-simpleui -i https://pypi.tuna.tsinghua.edu.cn/simple 2.修改配置文件 # 修改project的se ...

  3. 渗透测试-Kioptix Level 1靶机getshell及提权教程

    声明! 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无 ...

  4. CI/CD集成规范

    集成方式说明 a.用户向Gitlab提交代码,代码中包含 Dockerfile, JenkinsFile文件. b.Jenkins监听Gitlab代码库的推送和变更事件 c.Jenkins调用mave ...

  5. Flutter之GetX之Obs

    Flutter之GetX之Obs 除了之前说过的GetBuilder,GetX还有其他的状态管理方式 一个后缀就可以把一个变量变得可观察,变量每次改变的时候,使用它的小部件就会被更新 var name ...

  6. 中电金信:向“新”而行—探索AI在保险领域的创新应用

    大模型的应用已经渗透到各个领域,并展现出惊人的潜力.在自然语言处理方面,大模型用于机器翻译.文本摘要.问答系统等:在计算机视觉领域,应用于图像识别.目标检测.视频分析等:此外,大模型也应用于语音识别. ...

  7. kafka各个版本的特性

    1. kafka-0.8.2 新特性 1.1 异步发送 producer不再区分同步(sync)和异步方式(async),所有的请求以异步方式发送,这样提升了客户端效率.producer请求会返回一个 ...

  8. 绞尽脑汁终于搞定/天地图标注点marker旋转/任意角度旋转/无需引入其他框架

    一.前言说明 在其他地图组件中,标注点marker都是可以设置旋转角度的,这个功能其实非常实用,比如飞机移动轨迹,就是需要旋转飞机头飞行,轮船轨迹移动也是,百度地图和腾讯地图是通过调用setRotat ...

  9. Qt/C++编写网络摄像头推流(4路1080P主码流只占用0.2%CPU/极低延时极速响应)

    一.前言说明 将从网络摄像头拉流过来的视频流重新推流出去,是目前一个很常规的做法,尤其是推流到流媒体服务中心,这样流媒体服务中心就把散落在各个区域的监控摄像头集中起来统一管理,同时提供对外一致的访问接 ...

  10. Qt编写安防视频监控系统48-视频参数

    一.前言 视频参数之前在基本参数中,后面越来越多,直接独立了出来,甚至还拆分出来了视频参数1.视频参数2,参数越来越多分组也越来越多的时候,你会发现分组名称都不够用或者不方便命名,不能直观的表示该分组 ...