//src:待分割的二值图,最大值为255
//segMat:分割好的每个图片
//算法:判断连通域,有几个连通域就会分割成几个子图片
//用途:手写数字识别中进行无黏连数字的分割
void getConnectedDomain(cv::Mat &src, vector<cv::Mat>& segMat)//segMat为最终结果,存放分割好的每个数字
{
int img_row = src.rows;
int img_col = src.cols;
cv::Mat flag = cv::Mat::zeros(cv::Size(img_col, img_row), CV_8UC1);//标志矩阵,为0则当前像素点未访问过 for (int i = ; i < img_row; i++)
{
for (int j = ; j < img_col; j++)
{
if (src.ptr<uchar>(i)[j] == && flag.ptr<uchar>(i)[j] == )
{
cv::Mat subMat = cv::Mat::zeros(cv::Size(img_col, img_row), CV_8UC1);//表明子图
stack<cv::Point2f> cd;
cd.push(cv::Point2f(j, i));
flag.ptr<uchar>(i)[j] = ;
subMat.ptr<uchar>(i)[j] = ; while (!cd.empty())
{
cv::Point2f tmp = cd.top(); cd.pop();
cv::Point2f p[];//邻域像素点,这里用的四邻域
p[] = cv::Point2f(tmp.x - > ? tmp.x - : , tmp.y);
p[] = cv::Point2f(tmp.x + < img_col - ? tmp.x + : img_row - , tmp.y);
p[] = cv::Point2f(tmp.x, tmp.y - > ? tmp.y - : );
p[] = cv::Point2f(tmp.x, tmp.y + < img_row - ? tmp.y + : img_row - );
for (int m = ; m < ; m++)
{
int x = p[m].y;
int y = p[m].x;
if (src.ptr<uchar>(x)[y] == && flag.ptr<uchar>(x)[y] == )//如果未访问,则入栈,并标记访问过该点
{
cd.push(p[m]);
flag.ptr<uchar>(x)[y] = ;
subMat.ptr<uchar>(x)[y] = ;
}
}
}
segMat.push_back(subMat);
}
}
}
}

opencv对手写数字进行无黏连切割的更多相关文章

  1. opencv2.4.13+python2.7学习笔记--使用 knn对手写数字OCR

    阅读对象:熟悉knn.了解opencv和python. 1.knn理论介绍:算法学习笔记:knn理论介绍 2. opencv中knn函数 路径:opencv\sources\modules\ml\in ...

  2. 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维

    PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...

  3. OpenCV手写数字字符识别(基于k近邻算法)

    摘要 本程序主要参照论文,<基于OpenCV的脱机手写字符识别技术>实现了,对于手写阿拉伯数字的识别工作.识别工作分为三大步骤:预处理,特征提取,分类识别.预处理过程主要找到图像的ROI部 ...

  4. TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  5. 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类

    手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...

  6. 深度学习之PyTorch实战(3)——实战手写数字识别

    上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...

  7. 手写数字识别 ----Softmax回归模型官方案例注释(基于Tensorflow,Python)

    # 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tut ...

  8. NN:神经网络算法进阶优化法,进一步提高手写数字识别的准确率—Jason niu

    上一篇文章,比较了三种算法实现对手写数字识别,其中,SVM和神经网络算法表现非常好准确率都在90%以上,本文章进一步探讨对神经网络算法优化,进一步提高准确率,通过测试发现,准确率提高了很多. 首先,改 ...

  9. KNN分类算法实现手写数字识别

    需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...

随机推荐

  1. How Computers Boot Up.计算机的引导过程

    原文标题:How Computers Boot Up 原文地址:http://duartes.org/gustavo/blog/ [注:本人水平有限,只好挑一些国外高手的精彩文章翻译一下.一来自己复习 ...

  2. hive之窗口函数

    窗口函数 1.相关函数说明 COVER():指定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变而变化 CURRENT ROW:当前行 n PRECEDING:往前n行数据 n FOLLO ...

  3. 公式for TinyMCE 编辑器@ cnblogs.com

    编辑器截图: 行内公式:\(  f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right)  \) 行间公式:\\(  f(x,y,z) = 3 ...

  4. Java-左移右移-jdk8

    移位有三种 << 左移,左边补0 >> 右移,正数左边补0,负数补1 >>> 右移, 正数,负数统一左边补0 来看几个奇葩的代码 public static ...

  5. myeclipse项目 不能打开

    重启电脑后, myeclipse项目 不能打开了, 之前都是好好的!! 出现: Failed to read the project description file (.project) for ' ...

  6. Docker 初学

    据我理解, 它最大的用途是 将我们的应用及环境整个打包, 这样如果我们的开发环境环境部署了,就不用再分别去测试/ 生产环境部署了! -- 但是, 新问题在于, 拷贝这些东西比较麻烦... Docker ...

  7. kubernetes发布tomcat服务,通过deployment,service布署

    1.制作tomcat镜像 参考docker tomcat镜像制作 此处直接拉取 查看已有可镜像 先设置docker阿里源,即添加 "registry-mirrors": [&quo ...

  8. ubuntu建立wifi热点的方法

    原文在这里: http://www.linuxidc.com/Linux/2014-07/104624.htm 方法一:network manager 这种方法建立的热点,据说android搜不到. ...

  9. JAVA版开源微信管家—JeeWx捷微3.2版本发布,支持微信公众号,微信企业号,支付窗、小程序

    JeeWx捷微3.2微信企业号升级版本发布^_^ JeeWx捷微V3.2——多触点管理平台(支持微信公众号,微信企业号,支付窗.小程序)   JeeWx捷微V3.2.0版本引入了更多新特性,支持微信公 ...

  10. ConcurrentModificationException原因及排除

    如何产生,一边遍历一边修改元素,产生iter后再修改原结构,如下,无论是for中或iter都会产生ConcurrentModificationException import java.util.Ar ...