opencv对手写数字进行无黏连切割
//src:待分割的二值图,最大值为255
//segMat:分割好的每个图片
//算法:判断连通域,有几个连通域就会分割成几个子图片
//用途:手写数字识别中进行无黏连数字的分割
void getConnectedDomain(cv::Mat &src, vector<cv::Mat>& segMat)//segMat为最终结果,存放分割好的每个数字
{
int img_row = src.rows;
int img_col = src.cols;
cv::Mat flag = cv::Mat::zeros(cv::Size(img_col, img_row), CV_8UC1);//标志矩阵,为0则当前像素点未访问过 for (int i = ; i < img_row; i++)
{
for (int j = ; j < img_col; j++)
{
if (src.ptr<uchar>(i)[j] == && flag.ptr<uchar>(i)[j] == )
{
cv::Mat subMat = cv::Mat::zeros(cv::Size(img_col, img_row), CV_8UC1);//表明子图
stack<cv::Point2f> cd;
cd.push(cv::Point2f(j, i));
flag.ptr<uchar>(i)[j] = ;
subMat.ptr<uchar>(i)[j] = ; while (!cd.empty())
{
cv::Point2f tmp = cd.top(); cd.pop();
cv::Point2f p[];//邻域像素点,这里用的四邻域
p[] = cv::Point2f(tmp.x - > ? tmp.x - : , tmp.y);
p[] = cv::Point2f(tmp.x + < img_col - ? tmp.x + : img_row - , tmp.y);
p[] = cv::Point2f(tmp.x, tmp.y - > ? tmp.y - : );
p[] = cv::Point2f(tmp.x, tmp.y + < img_row - ? tmp.y + : img_row - );
for (int m = ; m < ; m++)
{
int x = p[m].y;
int y = p[m].x;
if (src.ptr<uchar>(x)[y] == && flag.ptr<uchar>(x)[y] == )//如果未访问,则入栈,并标记访问过该点
{
cd.push(p[m]);
flag.ptr<uchar>(x)[y] = ;
subMat.ptr<uchar>(x)[y] = ;
}
}
}
segMat.push_back(subMat);
}
}
}
}
opencv对手写数字进行无黏连切割的更多相关文章
- opencv2.4.13+python2.7学习笔记--使用 knn对手写数字OCR
阅读对象:熟悉knn.了解opencv和python. 1.knn理论介绍:算法学习笔记:knn理论介绍 2. opencv中knn函数 路径:opencv\sources\modules\ml\in ...
- 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维
PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...
- OpenCV手写数字字符识别(基于k近邻算法)
摘要 本程序主要参照论文,<基于OpenCV的脱机手写字符识别技术>实现了,对于手写阿拉伯数字的识别工作.识别工作分为三大步骤:预处理,特征提取,分类识别.预处理过程主要找到图像的ROI部 ...
- TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
- 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...
- 深度学习之PyTorch实战(3)——实战手写数字识别
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...
- 手写数字识别 ----Softmax回归模型官方案例注释(基于Tensorflow,Python)
# 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tut ...
- NN:神经网络算法进阶优化法,进一步提高手写数字识别的准确率—Jason niu
上一篇文章,比较了三种算法实现对手写数字识别,其中,SVM和神经网络算法表现非常好准确率都在90%以上,本文章进一步探讨对神经网络算法优化,进一步提高准确率,通过测试发现,准确率提高了很多. 首先,改 ...
- KNN分类算法实现手写数字识别
需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...
随机推荐
- Ramdisk虚拟内存盘,Swap分区
虚拟内存盘是通过软件将一部分内存(RAM)模拟为硬盘来使用的一种技术.相对于直接的硬盘文件访问来说,这种技术可以极大的提高在其上进行的文件访问的速度.但是RAM的易失性也意味着当关闭电源后这部分数据将 ...
- es6基础(1)--声明
function test(){ //let只在块作用域有效 for(let i=1;i<3;i++){ console.log(i); } //es6严格模式,变量未声明,不可以用 //con ...
- 微信小程序中使用iconfont/font-awesome等自定义字体图标
小程序不能识别外部字体文件,但是转换成Base64就可以使用字体图标了. 以阿里巴巴的iconfont为例 1.下载图标 先去官网下载喜欢的图标==> 下载解压后的文件夹==> 2.在线转 ...
- <spark> hadoop/spark 集群搭建
参考的这3个文档,虽然搭建花了挺长时间也遇到挺多问题,但是这3个文档对我的帮助确实挺大,如果有兴趣的或者有需要的可以参考以下文档. http://blog.csdn.net/wy250229163/a ...
- 54.纯 CSS 创作一副国际象棋
原文地址:https://segmentfault.com/a/1190000015310484 感想:棋盘是 CSS 画的,棋子是 unicode 字符. HTML code: <html&g ...
- 《算法》第六章部分程序 part 6
▶ 书中第六章部分程序,包括在加上自己补充的代码,包括二分图最大匹配(最小顶点覆盖)的交替路径算法和 HopcroftKarp 算法 ● 二分图最大匹配(最小顶点覆盖)的交替路径算法 package ...
- 《算法》第四章部分程序 part 15
▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...
- 《算法》第三章部分程序 part 5
▶ 书中第三章部分程序,加上自己补充的代码,包含公共符号表.集合类型 ● 公共符号表,用于普通查找表的基本类 package package01; import java.util.NoSuchEle ...
- python中的remove
remove()从左到右寻找,移除找到的第一个指定元素,举个例子: 1 a = ["hello", "world", "world", &q ...
- 1. Java 基 础 部 分
java" 源 文 件 中 是 否 可 以 包 括 多 个 类 ( 不 是 内 部 类 ) ? 有 什 么 限 制 ? 可以有多个类,但只能有一个 public 的类,并且 public 的 ...