Sliding Window Median LT480
Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
Examples:
[2,3,4] , the median is 3
[2,3], the median is (2 + 3) / 2 = 2.5
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k
numbers in the window. Each time the sliding window moves right by one
position. Your job is to output the median array for each window in the
original array.
For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
Window position Median
--------------- -----
[1 3 -1] -3 5 3 6 7 1
1 [3 -1 -3] 5 3 6 7 -1
1 3 [-1 -3 5] 3 6 7 -1
1 3 -1 [-3 5 3] 6 7 3
1 3 -1 -3 [5 3 6] 7 5
1 3 -1 -3 5 [3 6 7] 6
Therefore, return the median sliding window as [1,-1,-1,3,5,6].
Note:
You may assume k is always valid, ie: k is always smaller than input array's size for non-empty array.
class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(k > nums.length) {
return new double[0];
}
double[] result = new double[nums.length - k + 1];
int[] buffer = Arrays.copyOf(nums, k);
Arrays.sort(buffer);
result[0] = buffer[(k-1)/2]/2.0 + buffer[k/2]/2.0;
for(int right = k; right < nums.length; ++right) {
int pos = Arrays.binarySearch(buffer, nums[right-k]);
while(pos > 0 && buffer[pos-1] > nums[right]) {
buffer[pos] = buffer[pos-1];
--pos;
}
while(pos + 1 < k && buffer[pos+1] < nums[right]) {
buffer[pos] = buffer[pos+1];
++pos;
}
buffer[pos] = nums[right];
result[right - k + 1] = buffer[(k-1)/2]/2.0 + buffer[k/2]/2.0;
}
return result;
}
}
python:
class Solution:
def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]:
window = sorted(nums[0:k]) medianIndex = k
result = []
result.append(window[(k-1)//2]/2.0 + window[k//2]/2.0) for right in range(k, len(nums)):
window.remove(nums[right-k])
bisect.insort(window, nums[right])
result.append(window[(k-1)//2]/2.0 + window[k//2]/2.0) return result
Idea 2. a. Similar to find median from Data Stream LT295, besides we need to add element to the window, we need to remove element outside of window, the removing action in priority queue in java takes O(n), unless we make customized heap-based priority queue, the alternative choice is TreeSet, to deal with duplicates, use the index for equal elements.
Time complexity: O(nlogk)
Space complexity: O(k)
class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(k > nums.length) {
return new double[0];
}
double[] result = new double[nums.length - k + 1];
Comparator<Integer> cmp = (a, b) -> {
if(nums[a] == nums[b]) {
return a-b;
}
return Integer.compare(nums[a], nums[b]);
};
TreeSet<Integer> maxHeap = new TreeSet<>(cmp);
TreeSet<Integer> minHeap = new TreeSet<>(cmp);
for(int right = 0; right < nums.length; ++right) {
maxHeap.add(right);
minHeap.add(maxHeap.pollLast());
if(maxHeap.size() < minHeap.size()) {
maxHeap.add(minHeap.pollFirst());
}
if(right >= k-1) {
if(k%2 == 1) {
result[right-k+1] = nums[maxHeap.last()];
}
else {
result[right-k+1] = nums[maxHeap.last()]/2.0 + nums[minHeap.first()]/2.0;
}
if(!maxHeap.remove(right-k+1)) {
minHeap.remove(right-k+1);
}
}
}
return result;
}
}
Idea 2.b priority queue
Time complexity: O(nk)
Space complexity: O(k)
class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(k > nums.length) {
return new double[0];
}
double[] result = new double[nums.length - k + 1];
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
PriorityQueue<Integer> minHeap = new PriorityQueue<>();
for(int right = 0; right < nums.length; ++right) {
maxHeap.add(nums[right]);
minHeap.add(maxHeap.poll());
if(maxHeap.size() < minHeap.size()) {
maxHeap.add(minHeap.poll());
}
if(right >= k-1) {
if(k%2 == 1) {
result[right-k+1] = maxHeap.peek();
}
else {
result[right-k+1] = maxHeap.peek()/2.0 + minHeap.peek()/2.0;
}
if(!maxHeap.remove(nums[right-k+1])) {
minHeap.remove(nums[right-k+1]);
}
}
}
return result;
}
}
Idea 2.c. priority queue + hashmap to store elements outside of window, instead of remove elemnts immediately
Time complexity: O(nlogk)
Space complexity: O(n)
class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(k > nums.length) {
return new double[0];
}
double[] result = new double[nums.length - k + 1];
int leftCnt = 0;
int rightCnt = 0;
Map<Integer, Integer> record = new HashMap<>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
PriorityQueue<Integer> minHeap = new PriorityQueue<>();
for(int right = 0; right < nums.length; ++right) {
maxHeap.add(nums[right]);
minHeap.add(maxHeap.poll());
if(maxHeap.size() -leftCnt < minHeap.size() - rightCnt) {
maxHeap.add(minHeap.poll());
}
if(right >= k-1) {
if(k%2 == 1) {
result[right-k+1] = maxHeap.peek();
}
else {
result[right-k+1] = maxHeap.peek()/2.0 + minHeap.peek()/2.0;
}
if(maxHeap.peek() >= nums[right-k+1]) {
if(maxHeap.peek() == nums[right-k+1]) {
maxHeap.poll();
}
else {
record.put(nums[right-k+1], record.getOrDefault(nums[right-k+1], 0) + 1);
++leftCnt;
}
}
else {
if(minHeap.peek() == nums[right-k+1]) {
minHeap.poll();
}
else {
++rightCnt;
record.put(nums[right-k+1], record.getOrDefault(nums[right-k+1], 0) + 1);
}
}
while(record.containsKey(maxHeap.peek())) {
int key = maxHeap.poll();
record.put(key, record.get(key)-1);
if(record.get(key) == 0) {
record.remove(key);
}
--leftCnt;
}
while(record.containsKey(minHeap.peek())) {
int key = minHeap.poll();
record.put(key, record.get(key)-1);
if(record.get(key) == 0) {
record.remove(key);
}
--rightCnt;
}
}
}
return result;
}
}
Sliding Window Median LT480的更多相关文章
- [LeetCode] Sliding Window Median 滑动窗口中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- Leetcode: Sliding Window Median
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- LeetCode 480. Sliding Window Median
原题链接在这里:https://leetcode.com/problems/sliding-window-median/?tab=Description 题目: Median is the middl ...
- 【LeetCode】480. 滑动窗口中位数 Sliding Window Median(C++)
作者: 负雪明烛 id: fuxuemingzhu 公众号: 每日算法题 本文关键词:LeetCode,力扣,算法,算法题,滑动窗口,中位数,multiset,刷题群 目录 题目描述 题目大意 解题方 ...
- LintCode "Sliding Window Median" & "Data Stream Median"
Besides heap, multiset<int> can also be used: class Solution { void removeOnly1(multiset<in ...
- Lintcode360 Sliding Window Median solution 题解
[题目描述] Given an array of n integer, and a moving window(size k), move the window at each iteration f ...
- 滑动窗口的中位数 · Sliding Window Median
[抄题]: 给定一个包含 n 个整数的数组,和一个大小为 k 的滑动窗口,从左到右在数组中滑动这个窗口,找到数组中每个窗口内的中位数.(如果数组个数是偶数,则在该窗口排序数字后,返回第 N/2 个数字 ...
- Sliding Window Median
Description Given an array of n integer, and a moving window(size k), move the window at each iterat ...
- 480 Sliding Window Median 滑动窗口中位数
详见:https://leetcode.com/problems/sliding-window-median/description/ C++: class Solution { public: ve ...
随机推荐
- java.security.MessageDigest (2) 生成安全令牌!
时候,我们需要产生一个数据,这个数据保存了用户的信息,但加密后仍然有可能被人使用,即便他人不确切的了解详细信息... 好比,我们在上网的时候,很多网页都会有一个信息,是否保存登录信息,以便下次可以直接 ...
- Spring-session redis 子域名 session
Spring-session & redis 子域名共享session 例子: a.example.comb.example.comSpring 版本 4.2.6.RELEASE Spring ...
- 创建java项目思路
一.搭建 1.创建搭建项目 2.创建分层 二.理解项目(理清总体思路) 1.是否有共同部分(过滤或者拦截) 常用量 (static) 2.搭建单表基本增(是否需要返回值) 删(条件) 查(条 ...
- 专项测试——移动app安装包检测
一.背景和现状 安装包的重要性无需多提,针对安装包质量控制越来越严格和规范,包括证书.文件大小.安装成功率等,APP的证书及混淆是影响APP的安装成功率及代码安全性的很大因素,随着功能迭代,安装包也会 ...
- Java-分治算法
一.分治算法的原理 分治算法就是将一个规模为N的问题分解成K个规模较小的子问题,这些子问题相互独立且与原问题性质相同,求出子问题的解,就可以得出原问题的解 二.分治算法的伪代码实现 合并算法Merge ...
- Delphi: 获取控件文本宽度(像素)
为适应多语言,需要对界面控件大小.位置多动态改变,因此需要根据其Caption计算实际像素大小. 找资料未有易用现成的,遂参数其它方法,写以函数处之,代码如下: uses TypInfo; funct ...
- 7.27-8.10 Problems
这是之前记录在word里的问题,现在誊到博客里.温故知新.时常回顾问题. 7.27 Bootstrap validator remote 验证出错 用Bootstrap validator插件验证表单 ...
- pyinstller的安装
下载:http://www.pyinstaller.org/ 解压到目录 切换到python目录 执行命令: python.exe D:\Download\PyInstaller-2.1\setup. ...
- Json中不支持任何形式的注释,那我们要怎么解决呢
Json中不支持任何形式的注释,我们可以使用曲线救国的思路:在对象的定义中添加一个key(comment),其对应的value值就是注释填写的语句. 如: { "name":&qu ...
- maven构建ssh工程
1.1 需求 在web工程的基础上实现ssh工程的创建,规范依赖管理. 1.2 数据库环境 使用之前学习hibernate创建的数据库: 1.3 创建父工程 选择创建Maven Project ...