Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

Examples:

[2,3,4] , the median is 3

[2,3], the median is (2 + 3) / 2 = 2.5

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k
numbers in the window. Each time the sliding window moves right by one
position. Your job is to output the median array for each window in the
original array.

For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

Window position                Median
--------------- -----
[1 3 -1] -3 5 3 6 7 1
1 [3 -1 -3] 5 3 6 7 -1
1 3 [-1 -3 5] 3 6 7 -1
1 3 -1 [-3 5 3] 6 7 3
1 3 -1 -3 [5 3 6] 7 5
1 3 -1 -3 5 [3 6 7] 6

Therefore, return the median sliding window as [1,-1,-1,3,5,6].

Note:
You may assume k is always valid, ie: k is always smaller than input array's size for non-empty array.

Idea 1: BruteForce, keep the window sorted, if it's even numbers in the window, median = nums[(k-1)/2]/2.0 + nums[k/2]/2.0 to avoid overflow, median = nums[k/2] = nums[(k-1)/2] if k is odd, hence the formula is suitable for both even or odd k.
median = nums[(k-1)/2]/2.0 + nums[k/2]/2.0
 
Time complexity: O(nk), it takes O(k) to remove outside window element and add new element while keeping window sorted
Space complexity: O(k)
 class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(k > nums.length) {
return new double[0];
} double[] result = new double[nums.length - k + 1]; int[] buffer = Arrays.copyOf(nums, k);
Arrays.sort(buffer);
result[0] = buffer[(k-1)/2]/2.0 + buffer[k/2]/2.0; for(int right = k; right < nums.length; ++right) {
int pos = Arrays.binarySearch(buffer, nums[right-k]);
while(pos > 0 && buffer[pos-1] > nums[right]) {
buffer[pos] = buffer[pos-1];
--pos;
} while(pos + 1 < k && buffer[pos+1] < nums[right]) {
buffer[pos] = buffer[pos+1];
++pos;
} buffer[pos] = nums[right];
result[right - k + 1] = buffer[(k-1)/2]/2.0 + buffer[k/2]/2.0;
}
return result;
}
}

python:

 class Solution:
def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]:
window = sorted(nums[0:k]) medianIndex = k
result = []
result.append(window[(k-1)//2]/2.0 + window[k//2]/2.0) for right in range(k, len(nums)):
window.remove(nums[right-k])
bisect.insort(window, nums[right])
result.append(window[(k-1)//2]/2.0 + window[k//2]/2.0) return result

Idea 2. a. Similar to find median from Data Stream LT295, besides we need to add element to the window, we need to remove element outside of window, the removing action in priority queue in java takes O(n), unless we make customized heap-based priority queue, the alternative choice is TreeSet, to deal with duplicates, use the index for equal elements.

Time complexity: O(nlogk)

Space complexity: O(k)

 class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(k > nums.length) {
return new double[0];
} double[] result = new double[nums.length - k + 1]; Comparator<Integer> cmp = (a, b) -> {
if(nums[a] == nums[b]) {
return a-b;
}
return Integer.compare(nums[a], nums[b]);
};
TreeSet<Integer> maxHeap = new TreeSet<>(cmp);
TreeSet<Integer> minHeap = new TreeSet<>(cmp); for(int right = 0; right < nums.length; ++right) {
maxHeap.add(right);
minHeap.add(maxHeap.pollLast()); if(maxHeap.size() < minHeap.size()) {
maxHeap.add(minHeap.pollFirst());
} if(right >= k-1) {
if(k%2 == 1) {
result[right-k+1] = nums[maxHeap.last()];
}
else {
result[right-k+1] = nums[maxHeap.last()]/2.0 + nums[minHeap.first()]/2.0;
} if(!maxHeap.remove(right-k+1)) {
minHeap.remove(right-k+1);
}
}
} return result;
}
}

Idea 2.b priority queue

Time complexity: O(nk)

Space complexity: O(k)

 class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(k > nums.length) {
return new double[0];
} double[] result = new double[nums.length - k + 1]; PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
PriorityQueue<Integer> minHeap = new PriorityQueue<>(); for(int right = 0; right < nums.length; ++right) {
maxHeap.add(nums[right]);
minHeap.add(maxHeap.poll()); if(maxHeap.size() < minHeap.size()) {
maxHeap.add(minHeap.poll());
} if(right >= k-1) {
if(k%2 == 1) {
result[right-k+1] = maxHeap.peek();
}
else {
result[right-k+1] = maxHeap.peek()/2.0 + minHeap.peek()/2.0;
} if(!maxHeap.remove(nums[right-k+1])) {
minHeap.remove(nums[right-k+1]);
}
}
} return result;
}
}

Idea 2.c. priority queue + hashmap to store elements outside of window, instead of remove elemnts immediately

Time complexity: O(nlogk)

Space complexity: O(n)

 class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(k > nums.length) {
return new double[0];
} double[] result = new double[nums.length - k + 1]; int leftCnt = 0;
int rightCnt = 0;
Map<Integer, Integer> record = new HashMap<>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
PriorityQueue<Integer> minHeap = new PriorityQueue<>(); for(int right = 0; right < nums.length; ++right) {
maxHeap.add(nums[right]);
minHeap.add(maxHeap.poll()); if(maxHeap.size() -leftCnt < minHeap.size() - rightCnt) {
maxHeap.add(minHeap.poll());
} if(right >= k-1) {
if(k%2 == 1) {
result[right-k+1] = maxHeap.peek();
}
else {
result[right-k+1] = maxHeap.peek()/2.0 + minHeap.peek()/2.0;
} if(maxHeap.peek() >= nums[right-k+1]) {
if(maxHeap.peek() == nums[right-k+1]) {
maxHeap.poll();
}
else {
record.put(nums[right-k+1], record.getOrDefault(nums[right-k+1], 0) + 1);
++leftCnt;
}
}
else {
if(minHeap.peek() == nums[right-k+1]) {
minHeap.poll();
}
else {
++rightCnt;
record.put(nums[right-k+1], record.getOrDefault(nums[right-k+1], 0) + 1);
}
} while(record.containsKey(maxHeap.peek())) {
int key = maxHeap.poll();
record.put(key, record.get(key)-1);
if(record.get(key) == 0) {
record.remove(key);
}
--leftCnt;
} while(record.containsKey(minHeap.peek())) {
int key = minHeap.poll();
record.put(key, record.get(key)-1);
if(record.get(key) == 0) {
record.remove(key);
}
--rightCnt;
}
}
} return result;
}
}

Sliding Window Median LT480的更多相关文章

  1. [LeetCode] Sliding Window Median 滑动窗口中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  2. Leetcode: Sliding Window Median

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  3. LeetCode 480. Sliding Window Median

    原题链接在这里:https://leetcode.com/problems/sliding-window-median/?tab=Description 题目: Median is the middl ...

  4. 【LeetCode】480. 滑动窗口中位数 Sliding Window Median(C++)

    作者: 负雪明烛 id: fuxuemingzhu 公众号: 每日算法题 本文关键词:LeetCode,力扣,算法,算法题,滑动窗口,中位数,multiset,刷题群 目录 题目描述 题目大意 解题方 ...

  5. LintCode "Sliding Window Median" & "Data Stream Median"

    Besides heap, multiset<int> can also be used: class Solution { void removeOnly1(multiset<in ...

  6. Lintcode360 Sliding Window Median solution 题解

    [题目描述] Given an array of n integer, and a moving window(size k), move the window at each iteration f ...

  7. 滑动窗口的中位数 · Sliding Window Median

    [抄题]: 给定一个包含 n 个整数的数组,和一个大小为 k 的滑动窗口,从左到右在数组中滑动这个窗口,找到数组中每个窗口内的中位数.(如果数组个数是偶数,则在该窗口排序数字后,返回第 N/2 个数字 ...

  8. Sliding Window Median

    Description Given an array of n integer, and a moving window(size k), move the window at each iterat ...

  9. 480 Sliding Window Median 滑动窗口中位数

    详见:https://leetcode.com/problems/sliding-window-median/description/ C++: class Solution { public: ve ...

随机推荐

  1. ssm 连接两个数据库

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  2. 【Django】关于scss 的安装

    今天看视频教程的时候发现老师的样式文件改用了scss(然鹅我买的1块钱特价课程其实是节选出来的,所以前面没有看到过关于scss的介绍) 然后我本以为把原来的css改名字为scss就行,然鹅没有效果. ...

  3. 简单的linux命令

    1.cd命令: 这是一个最基本的命令,用于切换当前目录,可以是绝对路径,也可以是相对路径例: cd /root/doc   #切换到目录/root/doc cd ./path 切换到当前目录下的pat ...

  4. openstack(Pike 版)集群部署(四)--- Nova 部署

    一.介绍 参照官网部署:https://docs.openstack.org/nova/pike/install/    继续上一博客进行部署:http://www.cnblogs.com/weiji ...

  5. UVA-10054.The Necklace(欧拉回路)解题报告

    2019-02-09-21:55:23 原题链接 题目描述: 给定一串珠子的颜色对,每颗珠子的两端分别有颜色(用1 - 50 之间的数字表示,对每颗珠子的颜色无特殊要求),若两颗珠子的连接处为同种颜色 ...

  6. httpclient和httpUrlConnect区别

    HttpURLConnection的用法 一.创建HttpURLConnection对象 URL url = new URL("http://localhost:8080/TestHttpU ...

  7. JDBC、ODBC、OLE DB、ADO、ADOMD区别与联系

    ODBC: (Open Database Connectivity,开放数据库互连),它建立了一组规范,并提供了一组对数据库访问的标准API(应用程序编程接口).这些API利用SQL来完成其大部分任务 ...

  8. 《centos系列》配置vim编辑器

    直接wget到~/目录下: wget  http://files.cnblogs.com/ma6174/vimrc.zip 然后进行解压: unzip  -f  vimrc.zip  -d  ~/ 参 ...

  9. jsp选项过长自动换行

    自动换行前是这样的 从源码发现“打发的所发生的7”所在span跨行了,宽度为整行的宽度,不再是自身的实际宽度(一列时所占的宽度) 我的思路是要把这个换行元素前加上<br/>,使得该元素换行 ...

  10. echarts中国地图坐标弹框

    echarts链接:http://gallery.echartsjs.com/editor.html?c=xHkdOlpwWz 代码: var geoCoordMap = { '上海': [121.4 ...