Graph

Problem Description

P. T. Tigris is a student currently studying graph theory. One day, when he was studying hard, GS appeared around the corner shyly and came up with a problem:
Given a graph with n nodes and m undirected weighted edges, every node having one of two colors, namely black (denoted as 0) and white (denoted as 1), you’re to maintain q operations of either kind:

* Change x: Change the color of x
th node. A black node should be changed into white one and vice versa.

* Asksum A B: Find the sum of weight of those edges whose two end points are in color A and B respectively. A and B can be either 0 or 1.

P. T. Tigris doesn’t know how to solve this problem, so he turns to you for help.
 
Input
There are several test cases.

For each test case, the first line contains two integers, n and m (1 ≤ n,m ≤ 10
5), where n is the number of nodes and m is the number of edges.

The second line consists of n integers, the i
th of which represents the color of the i
th node: 0 for black and 1 for white.

The following m lines represent edges. Each line has three integer u, v and w, indicating there is an edge of weight w (1 ≤ w ≤ 2
31 - 1) between u and v (u != v).

The next line contains only one integer q (1 ≤ q ≤ 10
5), the number of operations.

Each of the following q lines describes an operation mentioned before.

Input is terminated by EOF.
 
Output
For each test case, output several lines.

The first line contains “Case X:”, where X is the test case number (starting from 1).

And then, for each “Asksum” query, output one line containing the desired answer.
 
Sample Input
4 3
0 0 0 0
1 2 1
2 3 2
3 4 3
4
Asksum 0 0
Change 2
Asksum 0 0
Asksum 0 1
4 3
0 1 0 0
1 2 1
2 3 2
3 4 3
4
Asksum 0 0
Change 3
Asksum 0 0
Asksum 0 1
 
Sample Output
Case 1:
6
3
3
Case 2:
3
0
4
这题是很好的题啊,题目意思就是,给一些点,都是0或1,找两边是00 01 11的边权合,这题的关键就是有的边很多,如果我们就用暴力,那么复杂度必然是p*n,其实,想想问题的关键,就是有的点相连的边太多了,这样暴力会超时,比赛的时候,也是这个问题,虽然有点想法,但当时由于时间太短,不能写出来,下来要想了很长时间,我们要把有很多的边标记下,特殊处理,这样,我们不就能省掉很多时间了么?基于,这样的想法,我们,就可以这样做,把超过界限的点,标记成超极点,其他的就是普通点,我们连接超极点和超极点,普通点与普通点。超极点,但是,超极点不连接普通点!对于超极点,我们用一个数组,保存它周围的0和1的点的权和,这样我们就可以用0(1)的时间,快速维护最终的结果,对于普通点,我们就暴力维护就可以了,因为他周围的点少,时间就可以大大的省下来!这样的想法很好,复杂度是多少呢?我们可以发现,如果我们把办限定为sqrt(m),那么超极点的个数一定不会多于2*sqrt(m),这一点很好证明,那么这样,所有点的暴力维护的值都是sqrt(m)了,那么复杂度就是n*sqrt(m),当然,这是可以过了的,这种思想很有用,也很神奇啊,当时,有点影子,但没有时间,来实现了!对于本题一定要注意重边的情况和一定要用--int64,好了,到这里,就可以a了!还有一点小技巧,见代码!
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
#define MAXN 100005
struct nodeedge{
int s,e;
__int64 val;
}edge[40*MAXN];
struct nodelist{
int next,to,flag;
}l[200*MAXN];
char str[300];
int head[MAXN],p[MAXN],index[MAXN],limit;//判定是否是超极点
__int64 sum[3],sumsuper[MAXN][2];
void change(int x)
{
int i,j;
int temp=p[x]^1,t; for(j=head[x];j!=-1;j=l[j].next)
{
i=l[j].to;
sum[p[x]+p[i]]-=edge[j].val;
sum[temp+p[i]]+=edge[j].val;
if((!l[x].flag)&&l[i].flag)
{
sumsuper[i][p[x]]-=edge[j].val;
sumsuper[i][temp]+=edge[j].val;
}
}
if(l[x].flag)
{
sum[p[x]]-=sumsuper[x][0];
sum[temp]+=sumsuper[x][0];
sum[p[x]+1]-=sumsuper[x][1];
sum[temp+1]+=sumsuper[x][1];
}
p[x]=p[x]^1;//取反
}
void build(int i,int s,int e,__int64 val)//建邻接表
{
if(l[s].flag&&(!l[e].flag))
{
sumsuper[s][p[e]]+=val;
}
else
{
l[i].next=head[s];
l[i].to=e;
head[s]=i;
}
}
bool cmp(nodeedge a,nodeedge b)
{
if(a.s != b.s)
return a.s < b.s;
else
return a.e < b.e;
}
int main ()
{
int n,m,i,edgem,m2,asnum,a1,a2,tcase;
tcase=1;
while(scanf("%d%d",&n,&m)!=EOF)
{
limit=350;m2=2*m;
sum[0]=sum[1]=sum[2]=0;
for(i=1;i<=n;i++)
{
scanf("%d",&p[i]);
index[i]=0;head[i]=-1;
}
for(i=1;i<=m;i++)
{
scanf("%d%d%I64d",&edge[i].s,&edge[i].e,&edge[i].val);
edge[i+m].s=edge[i].e,edge[i+m].e=edge[i].s,edge[i+m].val=edge[i].val;//建反向边
sum[p[edge[i].s]+p[edge[i].e]]+=edge[i].val;
}
sort(edge+1,edge+m2+1,cmp);//边从1开始计数
edgem=1;
for(i=2;i<=m2;i++)//去掉重边
{
if((edge[i].s==edge[edgem].s)&&(edge[i].e==edge[edgem].e))
{
edge[edgem].val+=edge[i].val;
}
else{
edgem++;
edge[edgem]=edge[i];
}
}
for(i=1;i<=edgem;i++)
{
index[edge[i].s]++;
}
for(i=1;i<=n;i++)//统计超极结点
{
if(index[i]>=limit)
{
l[i].flag=1;//是超极结点
sumsuper[i][0]=sumsuper[i][1]=0;
} else
l[i].flag=0;
} for(i=1;i<=edgem;i++)//建领接表
{
build(i,edge[i].s,edge[i].e,edge[i].val);
}
scanf("%d",&asnum);
printf("Case %d:\n",tcase++);
while(asnum--)
{
scanf("%s",str);
if(str[0]=='A')
{
scanf("%d%d",&a1,&a2);
printf("%I64d\n",sum[a1+a2]);
}
else{
scanf("%d",&a1);
change(a1);
}
} }
return 0;
}

hdu4467 Graph的更多相关文章

  1. HDU4467:Graph(点的度数分块)

    传送门 题意 给出一张n个点m条边的无向图,点的颜色为0/1,每次有两种操作: 1.Asksum x y,查询两点颜色为x和y的边的权值之和 2.Change x,将x颜色取反 分析 最直接的做法是每 ...

  2. HDU4467 Graph【轻重点维护】

    HDU4467 Graph 题意: 给出一张染色图,\(n\)个点每个点是黑色或者白色,\(m\)条带权边,\(q\)次操作,有两种操作: 改变一个点的颜色 问所有边中两个端点的颜色为给定情况的边权和 ...

  3. [开发笔记] Graph Databases on developing

    TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...

  4. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  5. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  6. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  7. [LeetCode] Graph Valid Tree 图验证树

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  8. [LeetCode] Clone Graph 无向图的复制

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  9. 讲座:Influence maximization on big social graph

    Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...

随机推荐

  1. Caffe 碎碎念

    Window Data Layer window data layer 的数据是存在硬盘上的图片, 需要在一个txt里指定用于训练或测试的图片以及bounding box, bounding box ...

  2. IL反编译的实用工具Ildasm.exe

    初识Ildasm.exe——IL反编译的实用工具    https://www.cnblogs.com/yangmingming/archive/2010/02/03/1662307.html   学 ...

  3. 基于theano的多层感知机的实现

    1.引言 一个多层感知机(Multi-Layer Perceptron,MLP)可以看做是,在逻辑回归分类器的中间加了非线性转换的隐层,这种转换把数据映射到一个线性可分的空间.一个单隐层的MLP就可以 ...

  4. Linux内核中的printf实现【转】

    转自:http://www.cnblogs.com/chenglei/archive/2009/08/06/1540702.html 从main.c中的printf开始读这个函数. 首先看printf ...

  5. oracle锁表查询,资源占用,连接会话,低效SQL等性能检查

    查询oracle用户名,机器名,锁表对象 select l.session_id sid, s.serial#, l.locked_mode, l.oracle_username, l.os_user ...

  6. Android 4.4 API

    Android 4.4 (KITKAT) 是新的 Android 平台版本,为用户和应用开发者提供了新功能.本文旨在介绍其中最值得关注的新 API. 作为应用开发者,您应尽快从 SDK 管理器下载 A ...

  7. Android 7.0 新增功能和api

    Android 7.0 Nougat 为用户和开发者引入多种新功能.本文重点介绍面向开发者的新功能. 请务必查阅 Android 7.0 行为变更以了解平台变更可能影响您的应用的领域. 要详细了解 A ...

  8. Java 接口关键字 interface

    interface这个关键字产生一个完全抽象的类,它根本就没有提供任何具体的实现,它允许创建者确定方法名.参数列表和返回类型,但没有任何方法体,接口只提供了形式,而未提供任何具体实现 一个接口表示:& ...

  9. CentOS 6 安装chromium

    由于centos 6对C++11支持不足的缘故,目前chromium已经不再支持CentOS 6系列. 这里介绍如何在centos 6系列安装chromium. 1.添加chromium源 cd /e ...

  10. NOIP 2000 计算器的改良

    题面 NCL是一家专门从事计算器改良与升级的实验室,最近该实验室收到了某公司所委托的一个任务:需要在该公司某型号的计算器上加上解一元一次方程的功能.实验室将这个任务交给了一个刚进入的新手ZL先生. 为 ...