机器学习进阶-案例实战-停车场车位识别-keras预测是否停车站有车
import numpy
import os from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Flatten, Dense, GlobalAveragePooling2D
from keras import backend as k
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping
from keras.models import Sequential
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.initializers import TruncatedNormal
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dropout
from keras.layers.core import Dense files_train = 0
files_validation = 0 cwd = os.getcwd()
folder = 'train_data/train'
for sub_folder in os.listdir(folder):
path, dirs, files = next(os.walk(os.path.join(folder,sub_folder)))
files_train += len(files) folder = 'train_data/test'
for sub_folder in os.listdir(folder):
path, dirs, files = next(os.walk(os.path.join(folder,sub_folder)))
files_validation += len(files) print(files_train,files_validation) img_width, img_height = 48, 48
train_data_dir = "train_data/train"
validation_data_dir = "train_data/test"
nb_train_samples = files_train
nb_validation_samples = files_validation
batch_size = 32
epochs = 15
num_classes = 2 model = applications.VGG16(weights='imagenet', include_top=False, input_shape = (img_width, img_height, 3)) for layer in model.layers[:10]:
layer.trainable = False x = model.output
x = Flatten()(x)
predictions = Dense(num_classes, activation="softmax")(x) model_final = Model(input = model.input, output = predictions) model_final.compile(loss = "categorical_crossentropy",
optimizer = optimizers.SGD(lr=0.0001, momentum=0.9),
metrics=["accuracy"]) train_datagen = ImageDataGenerator(
rescale = 1./255,
horizontal_flip = True,
fill_mode = "nearest",
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range=0.1,
rotation_range=5) test_datagen = ImageDataGenerator(
rescale = 1./255,
horizontal_flip = True,
fill_mode = "nearest",
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range=0.1,
rotation_range=5) train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size = (img_height, img_width),
batch_size = batch_size,
class_mode = "categorical") validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size = (img_height, img_width),
class_mode = "categorical") checkpoint = ModelCheckpoint("car1.h5", monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
early = EarlyStopping(monitor='val_acc', min_delta=0, patience=10, verbose=1, mode='auto') history_object = model_final.fit_generator(
train_generator,
samples_per_epoch = nb_train_samples,
epochs = epochs,
validation_data = validation_generator,
nb_val_samples = nb_validation_samples,
callbacks = [checkpoint, early])
机器学习进阶-案例实战-停车场车位识别-keras预测是否停车站有车的更多相关文章
- 机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, tra ...
- 机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的 ...
- 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)
1. sift.detectAndComputer(gray, None) # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...
- 机器学习进阶-案例实战-图像全景拼接-书籍SIFT特征点连接 1.cv2.drawMatches(对两个图像的关键点进行连线操作)
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2) # 对两个图像关键点进行连线操作 参数说明:im ...
- webpack4入门到进阶案例实战课程
愿景:"让编程不在难学,让技术与生活更加有趣" 更多教程请访问xdclass.net 第一章 webpack4前言 第一集 webpack4入门到进阶案例实战课程介绍 简介:讲述w ...
- Spark Streaming 进阶与案例实战
Spark Streaming 进阶与案例实战 1.带状态的算子: UpdateStateByKey 2.实战:计算到目前位置累积出现的单词个数写入到MySql中 1.create table CRE ...
- 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...
- javascript进阶教程第一章案例实战
javascript进阶教程第一章案例实战 一.学习任务 通过几个案例练习回顾学过的知识 通过练习积累JS的使用技巧 二.实例 练习1:删除确认提示框 实例描述: 防止用户小心单击了“删除”按钮,在用 ...
- javascript进阶教程第二章对象案例实战
javascript进阶教程第二章对象案例实战 一.学习任务 通过几个案例练习回顾学过的知识 通过案例练习补充几个之前没有见到或者虽然讲过单是讲的不仔细的知识点. 二.具体实例 温馨提示 面向对象的知 ...
随机推荐
- undefined reference to `__isnan'
sjs@sjs-virtual-machine:~/work/Onvif$ arm-hisiv100nptl-linux-gcc *.c -lpthread -static -o ../../nfsm ...
- C语言强化——指针
目录 相关概念 数组与函数 栈空间和堆空间的差异 指针常量与常量指针 指针数组与数组指针 二级指针 二级指针的传递 二级指针的偏移(索引式排序) 相关概念 指针的大小,在32系统上是4个字节:在64位 ...
- 安装httpd服务配置
本地yum源安装 mkdir /opt/dvd (先用mkdir去根下opt目录下建一个名字叫dvd的目录) mount /dev/sr0 /opt/dvd (用mount命令,挂载光盘设备 ...
- 云端搭建内网局域网+NAT冗余上网:vps-centos6.10 +pptp client +2个ros 实现默认走pptp上网,万一pptp断了,走另外一个ros路由+centos7补充了下
介绍下环境: 1.ROS1也是PPTP SERVER,IP为172.16.22.3/24,pptp pool为172.16.23.0/24,pptp的默认帐号是111,密码是123 2.ROS2的IP ...
- python基础介绍
一. 1.计算机基础 cpu:运算和控制:速度:飞机 内存:临时存储,供给cup数据,断电数据清空.成本高,速度:高铁 硬盘:相当于电脑的数据库,存储大量数据,数据永久保存(除非物理结构被破坏).速度 ...
- [UE4]缓存选项 Is volatile
volatile:易变的,不稳定的; (液体或油) 易挥发的; 爆炸性的; 快活的,轻快的; UI中的Is Volatile选项:意思当前控件是容易变化的. 这个是一个性能上的优化. 默认情况下UI都 ...
- c#特性学习(1)
C#中的特性我认为可以理解为Java中的注解,见名知意,就是描述这个类或是属性的一个信息,是一个语法糖.原理运用的是反射,下面我来演示一下它的原理.其中引用了软谋的代码. 举一个栗子.我们在做code ...
- 关于 MySQL LEFT JOIN 不可不知的事
你认为自己已对 MySQL 的 LEFT JOIN 理解深刻,这篇文章,我想让你能多学会点东西! ON 子句与 WHERE 子句的不同 一种更好地理解带有 WHERE ... IS NULL 子句的复 ...
- FIN omitted, FIN-ACK sent
STACKOVER ADDRESS:https://stackoverflow.com/questions/21390479/fin-omitted-fin-ack-sent question: As ...
- Java 日志
Java日志: 参考博客:http://www.importnew.com/16331.html 当日志中包含满足特定条件的记录时,触发相应的通知机制,或者在程序运行出现错误时,快速的定位潜在的问题源 ...