机器学习进阶-案例实战-停车场车位识别-keras预测是否停车站有车
import numpy
import os from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Flatten, Dense, GlobalAveragePooling2D
from keras import backend as k
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping
from keras.models import Sequential
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.initializers import TruncatedNormal
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dropout
from keras.layers.core import Dense files_train = 0
files_validation = 0 cwd = os.getcwd()
folder = 'train_data/train'
for sub_folder in os.listdir(folder):
path, dirs, files = next(os.walk(os.path.join(folder,sub_folder)))
files_train += len(files) folder = 'train_data/test'
for sub_folder in os.listdir(folder):
path, dirs, files = next(os.walk(os.path.join(folder,sub_folder)))
files_validation += len(files) print(files_train,files_validation) img_width, img_height = 48, 48
train_data_dir = "train_data/train"
validation_data_dir = "train_data/test"
nb_train_samples = files_train
nb_validation_samples = files_validation
batch_size = 32
epochs = 15
num_classes = 2 model = applications.VGG16(weights='imagenet', include_top=False, input_shape = (img_width, img_height, 3)) for layer in model.layers[:10]:
layer.trainable = False x = model.output
x = Flatten()(x)
predictions = Dense(num_classes, activation="softmax")(x) model_final = Model(input = model.input, output = predictions) model_final.compile(loss = "categorical_crossentropy",
optimizer = optimizers.SGD(lr=0.0001, momentum=0.9),
metrics=["accuracy"]) train_datagen = ImageDataGenerator(
rescale = 1./255,
horizontal_flip = True,
fill_mode = "nearest",
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range=0.1,
rotation_range=5) test_datagen = ImageDataGenerator(
rescale = 1./255,
horizontal_flip = True,
fill_mode = "nearest",
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range=0.1,
rotation_range=5) train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size = (img_height, img_width),
batch_size = batch_size,
class_mode = "categorical") validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size = (img_height, img_width),
class_mode = "categorical") checkpoint = ModelCheckpoint("car1.h5", monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
early = EarlyStopping(monitor='val_acc', min_delta=0, patience=10, verbose=1, mode='auto') history_object = model_final.fit_generator(
train_generator,
samples_per_epoch = nb_train_samples,
epochs = epochs,
validation_data = validation_generator,
nb_val_samples = nb_validation_samples,
callbacks = [checkpoint, early])
机器学习进阶-案例实战-停车场车位识别-keras预测是否停车站有车的更多相关文章
- 机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, tra ...
- 机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的 ...
- 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)
1. sift.detectAndComputer(gray, None) # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...
- 机器学习进阶-案例实战-图像全景拼接-书籍SIFT特征点连接 1.cv2.drawMatches(对两个图像的关键点进行连线操作)
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2) # 对两个图像关键点进行连线操作 参数说明:im ...
- webpack4入门到进阶案例实战课程
愿景:"让编程不在难学,让技术与生活更加有趣" 更多教程请访问xdclass.net 第一章 webpack4前言 第一集 webpack4入门到进阶案例实战课程介绍 简介:讲述w ...
- Spark Streaming 进阶与案例实战
Spark Streaming 进阶与案例实战 1.带状态的算子: UpdateStateByKey 2.实战:计算到目前位置累积出现的单词个数写入到MySql中 1.create table CRE ...
- 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...
- javascript进阶教程第一章案例实战
javascript进阶教程第一章案例实战 一.学习任务 通过几个案例练习回顾学过的知识 通过练习积累JS的使用技巧 二.实例 练习1:删除确认提示框 实例描述: 防止用户小心单击了“删除”按钮,在用 ...
- javascript进阶教程第二章对象案例实战
javascript进阶教程第二章对象案例实战 一.学习任务 通过几个案例练习回顾学过的知识 通过案例练习补充几个之前没有见到或者虽然讲过单是讲的不仔细的知识点. 二.具体实例 温馨提示 面向对象的知 ...
随机推荐
- DP Big Event in HDU
Big Event in HDU Time Limit : 10000/5000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) T ...
- 学习笔记之The Intelligent Investor, Rev. Ed
The Intelligent Investor, Rev. Ed https://www.safaribooksonline.com/library/view/the-intelligent-inv ...
- 在外部怎么调用jquery插件里的function
文章来源:百度知道 问:(function($){函数(){xxxx}})(jQuery),我怎么调用这个函数呢? (function($){ function render(jq){ 这里是jque ...
- AndroidStudio快捷键使用记录
输入logt+回车 自动增加Tag的定义. private static final String TAG = "MainActivity"; 输入logd+回车 自动增加d级别的 ...
- Linux常用指令之一
1.基础命令 ls --查看当前目录下的文件 cd --切换目录或者直接回到home目录 cd - --切换最近使用的两次目录 cd .. --切换到上一级目录 pwd ...
- 用singleton单例模式实现一个模块
对于具有唯一性的模块(例如,购物车项目中的物品数据,各个页面都要使用它,而且是唯一的数据),用singleton模式. var mySingleton = (function() { var priv ...
- tp5 计算两个日期之间相差的天数
//两个日期之间相差的天数 function diffBetweenTwoDays ($day1, $day2) { $second1 = strtotime($day1); $second2 = s ...
- JavaScript简单的实例应用
1.显示当前时间: <!doctype> <html> <head> <meta charset='utf-8'> <script type='t ...
- es6(10)--Set,Map(2)
//Map与Array的对比 { let map=new Map(); let array=[]; //增 map.set('t',1); array.push({t:1}); console.inf ...
- 0. 资料官网【从零开始学Spring Boot】
[视频&交流平台] àSpringBoot视频 http://study.163.com/course/introduction.htm?courseId=1004329008&utm ...