BZOJ原题链接

洛谷原题链接

显然可以用数据结构或\(ST\)表或单调队列来维护最值。

这里采用单调队列来维护。

先用单调队列维护每一行的最大值和最小值,区间长为正方形长度。

再用单调队列维护之前维护出的每行最值数组的每一列的最大值和最小值,区间同上。

最后维护出的数组其实就是以每个点为左上角的正方形中的最值,直接扫一遍求最小的差即可。

借用洛谷题解里大佬的图以更好说明:



(\(X,x\)分别是维护出原矩阵中行的最大、最小值,\(Y,y\)分别是维护\(X,x\)中列的最大、最小值)

#include<cstdio>
using namespace std;
const int N = 1010;
const int M = 2e6 + 10;
int a[N][N], ma_x[N][N], mi_x[N][N], ma_y[N][N], mi_y[N][N], qma[M], qmi[M];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
int main()
{
int i, j, n, m, k, lmi, lma, rmi, rma, o, oo, mi = 1e9;
n = re();
m = re();
k = re();
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
a[i][j] = re();
for (i = 1; i <= n; i++)
{
lmi = lma = 1;
rmi = rma = 0;
for (j = 1; j < k; j++)
{
for (; lma <= rma && a[i][qma[rma]] <= a[i][j]; rma--);
for (; lmi <= rmi && a[i][qmi[rmi]] >= a[i][j]; rmi--);
qma[++rma] = j;
qmi[++rmi] = j;
}
for (; j <= m; j++)
{
for (; lma <= rma && j - qma[lma] + 1 > k; lma++);
for (; lmi <= rmi && j - qmi[lmi] + 1 > k; lmi++);
for (; lma <= rma && a[i][qma[rma]] <= a[i][j]; rma--);
for (; lmi <= rmi && a[i][qmi[rmi]] >= a[i][j]; rmi--);
qma[++rma] = j;
qmi[++rmi] = j;
ma_x[i][j - k + 1] = a[i][qma[lma]];
mi_x[i][j - k + 1] = a[i][qmi[lmi]];
}
}
for (i = 1, o = m - k + 1; i <= o; i++)
{
lmi = lma = 1;
rmi = rma = 0;
for (j = 1; j < k; j++)
{
for (; lma <= rma && ma_x[qma[rma]][i] <= ma_x[j][i]; rma--);
for (; lmi <= rmi && mi_x[qmi[rmi]][i] >= mi_x[j][i]; rmi--);
qma[++rma] = j;
qmi[++rmi] = j;
}
for (; j <= n; j++)
{
for (; lma <= rma && j - qma[lma] + 1 > k; lma++);
for (; lmi <= rmi && j - qmi[lmi] + 1 > k; lmi++);
for (; lma <= rma && ma_x[qma[rma]][i] <= ma_x[j][i]; rma--);
for (; lmi <= rmi && mi_x[qmi[rmi]][i] >= mi_x[j][i]; rmi--);
qma[++rma] = j;
qmi[++rmi] = j;
ma_y[j - k + 1][i] = ma_x[qma[lma]][i];
mi_y[j - k + 1][i] = mi_x[qmi[lmi]][i];
}
}
for (i = 1, o = n - k + 1, oo = m - k + 1; i <= o; i++)
for (j = 1; j <= oo; j++)
mi = minn(mi, ma_y[i][j] - mi_y[i][j]);
printf("%d", mi);
return 0;
}

BZOJ1047或洛谷2216 [HAOI2007]理想的正方形的更多相关文章

  1. 洛谷 2216 [HAOI2007]理想的正方形

    题目戳这里 一句话题意 给你一个a×b的矩形,求一个n×n的子矩阵,矩阵里面的最大值和最小值之差最小. Solution 这个题目许多大佬都是单调队列,但是我不是很会,只好用了比较傻逼的方法: 首先我 ...

  2. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  3. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  4. 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解

        算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...

  5. [洛谷P2216][HAOI2007]理想的正方形

    题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小. 题解:二维$ST$表,每一个点试一下是不是左上角就行了 卡点:1.用了一份考试时候写的二维$S ...

  6. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  7. [Luogu 2216] [HAOI2007]理想的正方形

    [Luogu 2216] [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输 ...

  8. 洛谷 P2216 [HAOI2007]理想正方形

    洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\ ...

  9. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

随机推荐

  1. django 进阶篇

    models(模型) 创建数据库,设计表结构和字段 使用 MySQLdb 来连接数据库,并编写数据访问层代码 业务逻辑层去调用数据访问层执行数据库操作 import MySQLdb def GetLi ...

  2. Android --ListView使用ArrayAdapter

    1.继承ArrayAdapter public class TimerDataAdapter extends ArrayAdapter<TimerDataListItem> { //数据I ...

  3. [Javascript] Advanced Console Log Arguments

    Get more mileage from your console output by going beyond mere string logging - log entire introspec ...

  4. 利用glibc中锁结构的信息解决死锁问题

       首先非常感谢老丁和老李同学的帮助,没有他们这个问题估计又得搞很久.遇见这个问题,真是头疼.不熟悉代码.不熟悉流程,但是领导还是把活给排下来了(实在不解),只能硬着头皮找了. 问题是这样的,cac ...

  5. Linux命令 查看文件内容

    cat [功能说明] 查看文件的内容  #cat本身是一个串接命令,把指定一个或多个源文件的内容,利用>符号重定向到目标文件中,如果不指定重定向文件,则默认在标准输出设备上显示.此时,可以利用c ...

  6. CentOS7.2上用KVM安装虚拟机window10踩过的坑

    最近两个星期一直在琢磨kvm安装window10操作系统,并且通过桥接模式与外界通信,经历了九九八十一难,终于搞定.下面就记录以下我们在探索的过程中踩过的坑. 安装KVM 1. 系统要求:需要一台可以 ...

  7. 手机端仿ios的三级联动脚本四

    二,脚本 <script> $("#city-picker").cityPicker({ title: "选择省市区/县", onChange: f ...

  8. [Swift]LeetCode94. 二叉树的中序遍历 | Binary Tree Inorder Traversal

    Given a binary tree, return the inorder traversal of its nodes' values. Example: Input: [1,null,2,3] ...

  9. Sublime Text的使用

    本文目录 1.下载安装Sublime Text 2.配置Python IDE环境 3.sublime anaconda载入出现错误 4.Sublime Text快捷键 1.下载安装Sublime Te ...

  10. hihoCoder week10 后序遍历

    题目链接 https://hihocoder.com/contest/hiho10/problem/1 给出先序  中序 求 后序 #include <bits/stdc++.h> usi ...