4530: [Bjoi2014]大融合

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 280  Solved: 167
[Submit][Status][Discuss]

Description

小强要在N个孤立的星球上建立起一套通信系统。这套通信系统就是连接N个点的一个树。
这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量。
例如,在上图中,现在一共有了5条边。其中,(3,8)这条边的负载是6,因为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8)。
现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的询问。

Input

第一行包含两个整数N,Q,表示星球的数量和操作的数量。星球从1开始编号。
接下来的Q行,每行是如下两种格式之一:
A x y 表示在x和y之间连一条边。保证之前x和y是不联通的。
Q x y 表示询问(x,y)这条边上的负载。保证x和y之间有一条边。
1≤N,Q≤100000

Output

对每个查询操作,输出被查询的边的负载。

Sample Input

8 6
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8

Sample Output

6

HINT

Source

鸣谢佚名上传

Solution

这题的思路还是很好的,自己思考了一段时间才能想出来。

对于一次询问$<u,v>$,答案显然就是$size[u]*size[v]$,但是需要维护这样的树的形态并且询问。

然后我想了一种线段树合并的方法,但是蛋疼的地方是询问时的$size$很鸡肋,不能直接询问。

因为合并时是合并到一个点上,其余的点的线段树形态并不完整,这个地方其实和并查集很类似,那么再用并查集维护一下每个块的代表元素即可。

这样查询另一个点时也会有问题,那么限定查询区间为dfs序两端即可,然后这个题就很简单了,然后这个问题就转化成了$(size[root]-size[u])*size[u]$。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} #define MAXN 200010 int N,Q; struct EdgeNode{
int next,to;
}edge[MAXN];
int head[MAXN],cnt=1;
inline void AddEdge(int u,int v) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;}
inline void InsertEdge(int u,int v) {AddEdge(u,v); AddEdge(v,u);} int fa[MAXN];
inline int F(int x) {if (fa[x]==x) return x; else return fa[x]=F(fa[x]);} struct SgtNode{
int lson,rson,size;
}tree[MAXN*20];
int root[MAXN],sz; inline void Update(int x) {tree[x].size=tree[tree[x].lson].size+tree[tree[x].rson].size;} inline int Merge(int x,int y)
{
if (!x || !y) return x|y;
tree[x].size+=tree[y].size;
tree[x].lson=Merge(tree[x].lson,tree[y].lson);
tree[x].rson=Merge(tree[x].rson,tree[y].rson);
return x;
} inline void Insert(int &x,int l,int r,int pos)
{
x=++sz;
if (l==r) {
tree[x].size=1;
return;
}
int mid=(l+r)>>1;
if (pos<=mid) Insert(tree[x].lson,l,mid,pos);
else Insert(tree[x].rson,mid+1,r,pos);
Update(x);
} inline int Query(int x,int l,int r,int L,int R)
{
if (!x) return 0;
if (L<=l && R>=r) return tree[x].size;
int mid=(l+r)>>1,re=0;
if (L<=mid) re+=Query(tree[x].lson,l,mid,L,R);
if (R>mid) re+=Query(tree[x].rson,mid+1,r,L,R);
return re;
} int pl[MAXN],pre[MAXN],pr[MAXN],dfn,deep[MAXN];
inline void DFS(int now,int last)
{
pl[now]=++dfn; pre[dfn]=now;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last)
deep[edge[i].to]=deep[now]+1,
DFS(edge[i].to,now);
pr[now]=dfn;
} struct QNode{
int opt,x,y;
}Qr[MAXN]; int main()
{
N=read(),Q=read(); for (int i=1; i<=Q; i++) {
char opt[5]; scanf("%s",opt+1);
int x=read(),y=read();
if (opt[1]=='A') InsertEdge(x,y);
Qr[i]=(QNode){(opt[1]=='A'? 0:1),x,y};
} for (int i=1; i<=N; i++) if (!deep[i]) DFS(i,0); for (int i=1; i<=N; i++) fa[i]=i,Insert(root[i],1,N,pl[i]); for (int i=1; i<=Q; i++) {
if (Qr[i].opt==0) {
int x=F(Qr[i].x),y=F(Qr[i].y);
if (deep[x]>deep[y]) swap(x,y);
root[x]=Merge(root[x],root[y]);
fa[y]=x;
} else {
int x=Qr[i].x,y=Qr[i].y,z;
if (deep[x]<deep[y]) swap(x,y); z=F(x);
int siz=Query(root[z],1,N,pl[x],pr[x]);
printf("%lld\n",1LL*(tree[root[z]].size-siz)*siz);
}
} return 0;
}

  

【BZOJ-4530】大融合 线段树合并的更多相关文章

  1. BZOJ.3545.[ONTAK2010]Peaks(线段树合并)

    题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. \(Solut ...

  2. bzoj 4631: 踩气球 线段树合并

    4631: 踩气球 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 265  Solved: 136[Submit][Status][Discuss] ...

  3. BZOJ:5457: 城市(线段树合并)(尚待优化)

    5457: 城市 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 18  Solved: 12[Submit][Status][Discuss] Des ...

  4. 洛谷 4219/BZOJ 4530 大融合

    4530: [Bjoi2014]大融合 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 990  Solved: 604[Submit][Status] ...

  5. bzoj 4756 Promotion Counting —— 线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 合并子树的权值线段树: merge 返回 int 或者是 void 都可以. 代码如下 ...

  6. [BZOI2014]大融合——————线段树进阶

    竟然改了不到一小时就改出来了, 可喜可贺 Description Solution 一开始想的是边两侧简单路径之和的乘积,之后发现这是个树形结构,简单路径数就是节点数. 之后的难点就变成了如何求线段树 ...

  7. bzoj 4530 大融合 —— LCT维护子树信息

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 用LCT维护子树 size,就是实边和虚边分开维护: 看博客:https://blog ...

  8. BZOJ4530 BJOI2014大融合(线段树合并+并查集+dfs序)

    易知所求的是两棵子树大小的乘积.先建出最后所得到的树,求出dfs序和子树大小.之后考虑如何在动态加边过程中维护子树大小.这个可以用树剖比较简单的实现,但还有一种更快更优美的做法就是线段树合并.对每个点 ...

  9. 2019.01.14 bzoj4530: [Bjoi2014]大融合(线段树合并)

    传送门 线段树合并菜题. 题意简述:nnn个点,支持连边以及查询一个点所在连通块中经过这个点的路径条数,保证这张图时刻为森林. 思路: 先建出所有操作完之后的树统计出dfsdfsdfs序 注意有可能是 ...

随机推荐

  1. 洛谷 P3994 高速公路

    https://www.luogu.org/problemnew/show/P3994 设dp[i] 表示第i个城市到根节点的最小花费 dp[i]=min{ (dis[i]-dis[j])*P[i]+ ...

  2. 原生JavaScript技巧大收集(1~10)

    1.原生JavaScript实现字符串长度截取 01 function cutstr(str, len) { 02     var temp; 03     var icount = 0; 04    ...

  3. javascript惰性函数

    惰性函数:所谓惰性函数就是创建了一个新函数并且将其分配给保存了另外函数的同一个变量,就以一个新函数覆盖了旧函数.某种程度上,回收了旧函数指针以指向一个新函数. 板栗: var scareMe = fu ...

  4. 【三分钟视频教程】iOS开发中 Xcode 报 apple-o linker 错误的#解决方案#

      [三分钟视频教程]iOS开发中 Xcode 报 apple-o linker 错误的#解决方案#   同样的道理,指向同一库文件的代码语句如果重复书写,即使重复书写所在的文件名字不同,同样会造成这 ...

  5. oracle用户密码过期!the password has expired

    Oracle提示错误消息ORA-28001: the password has expired,是由于Oracle11G的新特性所致, Oracle11G创建用户时缺省密码过期限制是180天(即6个月 ...

  6. Chrome插件:gitlab activity dashboard background-color

    背景 我一般都是在activity dashboard页看同事的提交记录,这样只要我有权限的项目有人提交了我就能够知道,虽然提交的具体代码压根不看.......但至少能够了解各个项目的开发情况(如果大 ...

  7. c语言.函数指针数组

    函数指针: 一个指向函数的指针.一般用函数名表示. 函数指针数组:元素为函数指针的数组.转移表.c语言中函数不可以定义为数组,只能通过定义函数指针来操作. #include<stdio.h> ...

  8. Javascript - 操作符

    操作符(Operator) void 如果void后是数字,就返回NAN,否则返回Undefined. alert(void "hello");//跟的字符 print undef ...

  9. 【Udacity并行计算课程笔记】- lesson 1 The GPU Programming Model

    一.传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors( ...

  10. .NET C#错误:所生成项目的处理器框架“MSIL”与引用“wdapi_dotnet1021”的处理器架构“AMD64”不匹配

    .NET C#错误:所生成项目的处理器框架“MSIL”与引用“wdapi_dotnet1021”的处理器架构“AMD64”不匹配. 直接在项目右键属性->生成->x64. 即可解决