P3254 圆桌问题
非常简单的一道网络流题
我们发现每个单位的人要坐到不同餐桌上,那也就是说每张餐桌上不能有同一单位的人。这样的话,我们对于每个单位向每张餐桌连一条边权为1的边,表示同一餐桌不得有相同单位的人。从源点向每个单位连一条边权为人数的边,从餐桌向汇点连一条边权为餐桌容量的边,这样的话跑最大流,跑出来的结果就是在满足以上条件的情况下最多能坐多少人,如果结果等于总人数,说明可行,否则不可行。
那么怎么输出方案呢?
我们记录每个单位向每张餐桌连的边的序号,如果这条边流满了,则说明这个单位有一个人坐在这张餐桌上。这样输出即可
下放代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long
#define gc getchar
#define maxn 505
#define maxm 100005
using namespace std;
inline ll read(){
ll a=0;int f=0;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
}int n,m,S,T,ans;
struct ahaha{
int w,to,next;
}e[maxm<<1];int tot,head[maxn];
inline void add(int u,int v,int w){
e[tot]={w,v,head[u]};head[u]=tot++;
}
int q[maxn],dep[maxn];
int bfs(){memset(dep,-1,sizeof dep); //非常朴素的dinic
int h=0,t=1;dep[S]=0;
while(++h<=t){
int u=q[h];
for(int i=head[u];~i;i=e[i].next){
int v=e[i].to;if(~dep[v]||e[i].w<=0)continue;
dep[v]=dep[u]+1;q[++t]=v;
if(v==T)return 1;
}
}return 0;
}
int dfs(int u,int w){
if(u==T)return w;
int sum=0;
for(int i=head[u];~i;i=e[i].next){
int v=e[i].to;if(dep[v]!=dep[u]+1||e[i].w<=0)continue;
int d=dfs(v,min(w-sum,e[i].w));
e[i].w-=d,e[i^1].w+=d;
sum+=d;if(sum==w)break;
}
if(sum<w)dep[u]=-1;
return sum;
}
int main(){memset(head,-1,sizeof dep);
n=read();m=read();T=n+m+1;
for(int i=1;i<=n;++i) //因为先添加这种边,所以无需记录编号,直接计算得即可
for(int j=1;j<=m;++j){
add(i,j+n,1);
add(j+n,i,0);
}
for(int i=1;i<=n;++i){
int a=read();ans+=a;
add(S,i,a);add(i,S,0);
}
for(int i=1;i<=m;++i){
int a=read();
add(n+i,T,a);add(T,n+i,0);
}
while(bfs())
ans-=dfs(S,2147483647);
if(ans){
puts("0");
return 0;
}
puts("1");
for(int i=1;i<=n;++i,puts("")) //这里就是上面说的输出方案
for(int j=1;j<=m;++j){
int p=((i-1)*m+j-1)*2;
if(e[p].w)continue;
printf("%d ",j);
}
return 0;
}
P3254 圆桌问题的更多相关文章
- Luogu P3254 圆桌问题(最大流)
P3254 圆桌问题 题面 题目描述 假设有来自 \(m\) 个不同单位的代表参加一次国际会议.每个单位的代表数分别为 \(r_i (i =1,2,--,m)\) . 会议餐厅共有 \(n\) 张餐桌 ...
- P3254 圆桌问题 网络流
P3254 圆桌问题 #include <bits/stdc++.h> using namespace std; , inf = 0x3f3f3f; struct Edge { int f ...
- 网络流之P3254 圆桌问题
题目描述 假设有来自m 个不同单位的代表参加一次国际会议.每个单位的代表数分别为ri (i =1,2,……,m). 会议餐厅共有n 张餐桌,每张餐桌可容纳ci (i =1,2,……,n)个代表就餐. ...
- 洛谷 [P3254] 圆桌问题
简单最大流建图 #include <iostream> #include <cstdio> #include <cstring> #include <cmat ...
- Luogu P3254 圆桌问题
题目链接 \(Click\) \(Here\) 水题.记得记一下边的流量有没有跑完. #include <bits/stdc++.h> using namespace std; const ...
- 洛谷P3254 圆桌问题(最大流)
传送门 一道良心啊……没那么多麻烦了…… 从$S$向所有单位连边,容量为单位人数,从所有桌子向$T$连边,容量为桌子能坐的人数,从每一个单位向所有桌子连边,容量为$1$,然后跑一个最大流,看一看$S$ ...
- [洛谷P3254]圆桌问题
题目大意:有$m$个单位,每个单位有$r_i$个代表,有$n$张餐桌,每张餐桌可容纳$c_i$个代表.要求同一个单位的代表不在同一个餐桌就餐.若可以,输出$1$以及其中一种方案,否则输出$0$ 题解: ...
- 洛谷P3254 圆桌问题(最大流)
题意 $m$个不同单位代表参加会议,第$i$个单位有$r_i$个人 $n$张餐桌,第$i$张可容纳$c_i$个代表就餐 同一个单位的代表需要在不同的餐桌就餐 问是否可行,要求输出方案 Sol 比较zz ...
- 洛谷 P3254 圆桌问题【最大流】
s向所有单位连流量为人数的边,所有饭桌向t连流量为饭桌容量的边,每个单位向每个饭桌连容量为1的边表示这个饭桌只能坐这个单位的一个人.跑dinic如果小于总人数则无解,否则对于每个单位for与它相连.满 ...
随机推荐
- $\rm{NOIP}$前的模拟题整理·菜鸡互啄篇
嗯,打算整理一下我们机房菜鸡互啄中比较不错的题-- 大概情况就是每个人出三道题,然后互测这种感觉-- 至于某些Y姓基佬.Z姓基佬偷偷出原题--就不说了233 嗯,剩下的就先\(magpie\)着吧23 ...
- 20155305乔磊《网络对抗》逆向及Bof基础
20155305乔磊<网络对抗>逆向及Bof基础 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何 ...
- 汇编 ADD指令
知识点: 加法汇编指令ADD 一.加法指令 ADD(Addition) 格式 格式: ADD A,B //A=A+B; 功能: 两数相加 . OPRD1为任一通用寄存器或存储器操作数,可以是任意一个 ...
- ZeroMQ使用汇总
ZeroMQ,史上最快的消息队列 —– ZMQ的学习和研究 ZeroMQ 的模式 [架构] ZeroMQ 深度探索(一) 消息队列ZeroMQ 服务端使用流程: void* m_Context; v ...
- RHEL6 最小化系统 编译安装部署zabbix (mysql)
RHEL6 最小化系统 编译安装部署zabbix (mysql)官方说明详细见:https://www.zabbix.com/documentation/4.0/manual/installation ...
- bootstrap-validator基本使用(自定义验证身份证号和手机号)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...
- index索引的一些简单理解
index索引(普通索引,允许出现相同的索引内容) 1.索引 索引是在数据量和访问量较大的时候,而出现的一种优化数据库的手段 索引可以提高查询(select)的效率,但相应的,它的 INSERT 与 ...
- NX 栈不可执行的绕过方式--ROP链
目标程序下载 提取码:5o0a 环境:Ubuntu linux 工具 pwn-gdb pwntools python库 ROPgadget ( 这些工具可以到github官网找) 1.检查程序开了哪些 ...
- shellcode 初次使用笔记
winXP SP3 环境 (xp环境默认没开启栈不可执行机制,比较方便破解,如果已开启了,请自行百度如何关闭) dig.exe 目标文件 x86dbg调试工具 python 环境 打开准备好的目标软件 ...
- 浅谈我的UI设计之路
时光匆匆,进入UI学习已经快两个月了,这段时间过得很充实,因为有压力才有收获. 还记的刚刚学习手绘的时候,对于这个行业只有一个初步的认识,知道自己喜欢,但是真正学习的时候才发现,我要学习的东西还有很多 ...