kdTree相关原理及c++实现
kdTree概念
kd-tree或者k维树是计算机科学中使用的一种数据结构,用来组织表示k维空间中点的集合。它是一种带有其他约束条件的二分查找树。Kd-tree对于区间和近邻搜索十分有用。一般位于三维空间中的邻域搜索常用kd-tree,因此本文中所有的kd-tree都是三维的kd-tree。
图一
Kd-tree也是二叉树的一种,首先我们先选定一个维度用于第一次分类,如图一所示,我们先选择x维度方向作为分类方向,随机选取一个值使得小于该值的点位于左边,大于该值的点位于右边。在左右区域分别再对第二个维度进行分类,这里以y轴方向作为第二维度,同理根据y分类设置z轴方向为第三维度进行分类。
Kd-tree数据结构定义
Node-data:数据矢量,数据集中某个数据点,是n维矢量(总维度,unsigned int)
Range:空间矢量,该节点所代表的的空间范围(二维数组)
Split:整数,垂直于分割超平面的方向轴序号(int)
Left:k-d树,由位于该节点分割超平面左侧子空间内所有点构成的k-d树(tuple<list,int>)
Right:k-d树,由位于该节点分割超平面右侧子空间内所有点构成的k-d树(tuple<list,int>)
Parent:k-d树,父节点(auto)
Kd-tree优化
方案一:Kd-tree通过不同维度划分数据,节点的选择显得尤为重要。我们可以想象一组点云,并不是完全随机离散的,只在某一维度上点云分布较为离散,其余维度相对集中。以三维空间为例,一组类似球状的点云在求每个方向的子节点能保证效率是最高的,但是数据接近一个平面时,在其中一个维度的划分就显得十分困难。
解决方法:首先,对于点云分布不集中的那一维度来说,方差较大,我们可以通过最大方差法选择每次需要分类的维度,即在每次进行新的划分之前,我们通过判断方差选择在哪个维度上进行划分。
方案二:为了保证每次选择的节点尽量位于中间位置,也就是让二叉树尽量为二叉平衡树,从而保证节点两侧的点云数目大致相等。
解决方法:在选取节点前,我们对数据进行排序,选取中位数作为节点,这样就能保证两侧数据大致相等。
PCL库c++源码
#include <iostream>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/impl/kdtree_flann.hpp>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/kdtree/io.h>
#include <pcl/kdtree/flann.h>
#include <pcl/search/kdtree.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/impl/io.hpp>
#include <pcl/search/flann_search.h>
#include <pcl/surface/gp3.h>
//#include <pcl/visualization/pcl_visualizer.h> int main(int argc, char* argv[])
{
pcl::PointCloud<pcl::PointXYZ>::Ptr inCloud(new pcl::PointCloud<pcl::PointXYZ>);
//construct a plane, the equation is x + y + z = 1
for (float x = -1.0; x <= 1.0; x += 0.005)
{
for (float y = -1.0; y <= 1.0; y += 0.005)
{
pcl::PointXYZ cloud; cloud.x = x;
cloud.y = y;
cloud.z = - x - y; inCloud->push_back(cloud);
}
} pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
pcl::PointCloud<pcl::Normal>::Ptr pcNormal(new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
tree->setInputCloud(inCloud);
ne.setInputCloud(inCloud);
ne.setSearchMethod(tree);
ne.setKSearch();
//ne->setRadiusSearch (0.03);
ne.compute(*pcNormal); pcl::PointCloud<pcl::PointXYZINormal>::Ptr cloud_with_normals(new pcl::PointCloud<pcl::PointXYZINormal>);
pcl::concatenateFields(*inCloud, *pcNormal, *cloud_with_normals); pcl::io::savePCDFile("plane_cloud_out.pcd", *cloud_with_normals); return ;
}
【 结束 】
kdTree相关原理及c++实现的更多相关文章
- KdTree && Octree 原理学习对比以及可视化分析--"索引树"
1. Kdtree 原理 k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索): 索引结构中相似性查询有两种基 ...
- 常见的GAN网络的相关原理及推导
常见的GAN网络的相关原理及推导 在上一篇中我们给大家介绍了GAN的相关原理和推导,GAN是VAE的后一半,再加上一个鉴别网络.这样而导致了完全不同的训练方式. GAN,生成对抗网络,主要有两部分构成 ...
- Kd-tree算法原理
参考资料: Kd Tree算法原理 Kd-Tree,即K-dimensional tree,是一棵二叉树,树中存储的是一些K维数据.在一个K维数据集合上构建一棵Kd-Tree代表了对该K维数据集合构成 ...
- Kd-Tree算法原理和开源实现代码
本文介绍一种用于高维空间中的高速近期邻和近似近期邻查找技术--Kd-Tree(Kd树). Kd-Tree,即K-dimensional tree,是一种高维索引树形数据结构,经常使用于在大规模的高维数 ...
- ssh相关原理学习与常见错误总结
欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...
- 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...
- HOOK相关原理与例子
消息HOOK 原理: 1. 用户输入消息,消息被放到系统消息队列. 2. 程序发生了某些需要获取输入的事件,就从系统消息队列拿出消息放到程序消息队列中. 3. 应用程序检测到有新的消息进入到程序消息队 ...
- composer安装及使用说明和相关原理文档
一.安装composer: 1.官方安装方法见https://getcomposer.org/download/ 2.本人安装方法: ①先配好yum源(不会配置的见博客如何制作自己的yum源),我 ...
- View的相关原理(读书笔记)
View的使用方法相关: 1.setContentView() 2.LayoutInflater.inflate() PS:本质上setContentView()方法最终也是通过LayoutInfla ...
随机推荐
- 创建第一个MVC应用程序
整个国庆期假,Insus.NET没有出门,在家静心修炼MVC.这意味着Insus.NET将来的日子里会以MVC为学习,开发,应用作为重点,不过现在才开始踏出第一步...... 路慢慢...... 下载 ...
- NPOI 之导入导出
转自https://www.cnblogs.com/zuowj/archive/2015/05/04/4475663.html转别人的,做了一点点改动 using NPOI.HSSF.UserMode ...
- winform窗体 小程序【线程】
线程是进程中执行运算的最小单位,也是执行处理机调度的基本单位.实际上线程是轻量级的进程.那么为什么要使用线程呢? (1)易于调度. (2)提高并发性.通过线程可方便有效地实现并发性.进程可创建多个线程 ...
- Bell(矩阵快速幂+中国剩余定理)
Bell Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
- python内置函数每日一学 -- any()
any(iterable) 官方文档解释: Return True if any element of the iterable is true. If the iterable is empty, ...
- 数组无法使用 forEach() 方法 - 分号的重要性
问题描述: 函数的结构如上图所示,在调用该函数的时候,浏览器报错: 分析原因: 在 js 的语法中,如果语句独占一行,通常可以省略句末的分号 但实际上 js 解析代码的时候,只有在句末缺少分号就无法正 ...
- lamp配置多个虚拟站点
在同一ip下添加多个域名站点! 1.查看ip 命令:ifconfig 2.添加域名 命令:vi /etc/hosts 输入域名:如 192.168.160.127 www.test.com 192 ...
- jQuery中hover方法和toggle方法使用指南
jQuery提供一些方法(如:toggle)将两种事件效果合并到一起,比如:mouseover.mouseout:keyup.keydown等 1.hover函数 hover(over,out)一个模 ...
- phpstudy集成下Apache配置部署https安全证书
一..先申请到安全证书.(腾讯云或者阿里云申请免费1年的安全证书),怎么申请这里也说下(以腾讯云为例): 1.登录腾讯云QQ或微信登录都行,第一次登录要通过实名认证,点击[产品]---[ss证书l] ...
- loadrunner 脚本开发- web_url函数详解
脚本开发- web_url函数详解 by:授客 QQ:1033553122 加载指定url的web页面(GET请求) C语言函数 int web_url( const char *StepName ...