Python’s with statement provides a very convenient way of dealing with the situation where you have to do a setup and teardown to make something happen. A very good example for this is the situation where you want to gain a handler to a file, read data from the file and the close the file handler. 有一些任务,可能事先需要设置,事后做清理工作。对于这种场景,Python的with语句提供了一种非常方便的处理方式。一个很好的例子是文件处理,你需要获取一个文件句柄,从文件中读取数据,然后关闭文件句柄。 Without the with statement, one would write something along the lines of: 如果不用with语句,代码如下:

1
2
3
file = open("/tmp/foo.txt")
data = file.read()
file.close()

There are two annoying things here. First, you end up forgetting to close the file handler. The second is how to handle exceptions that may occur once the file handler has been obtained. One could write something like this to get around this: 这里有两个问题。一是可能忘记关闭文件句柄;二是文件读取数据发生异常,没有进行任何处理。下面是处理异常的加强版本:

1
2
3
4
5
file = open("/tmp/foo.txt")
try:
    data = file.read()
finally:
    file.close()

While this works well, it is unnecessarily verbose. This is where with is useful. The good thing about with apart from the better syntax is that it is very good handling exceptions. The above code would look like this, when using with: 虽然这段代码运行良好,但是太冗长了。这时候就是with一展身手的时候了。除了有更优雅的语法,with还可以很好的处理上下文环境产生的异常。下面是with版本的代码:

1
2
with open("/tmp/foo.txt") as file:
    data = file.read()

with如何工作?

while this might look like magic, the way Python handles with is more clever than magic. The basic idea is that the statement after with has to evaluate an object that responds to an __enter__() as well as an __exit__() function. 这看起来充满魔法,但不仅仅是魔法,Python对with的处理还很聪明。基本思想是with所求值的对象必须有一个__enter__()方法,一个__exit__()方法。 After the statement that follows with is evaluated, the __enter__() function on the resulting object is called. The value returned by this function is assigned to the variable following as. After every statement in the block is evaluated, the __exit__() function is called. 紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量。当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法。 This can be demonstrated with the following example: 下面例子可以具体说明with如何工作:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# with_example01.py
 
 
class Sample:
    def __enter__(self):
        print "In __enter__()"
        return "Foo"
 
    def __exit__(self, type, value, trace):
        print "In __exit__()"
 
 
def get_sample():
    return Sample()
 
 
with get_sample() as sample:
    print "sample:", sample

When executed, this will result in: 运行代码,输出如下

1
2
3
4
bash-3.2$ ./with_example01.py
In __enter__()
sample: Foo
In __exit__()

As you can see, The __enter__() function is executed The value returned by it - in this case "Foo" is assigned to sample The body of the block is executed, thereby printing the value of sample ie. "Foo" The __exit__() function is called. What makes with really powerful is the fact that it can handle exceptions. You would have noticed that the __exit__() function for Sample takes three arguments - val, type and trace. These are useful in exception handling. Let’s see how this works by modifying the above example. 正如你看到的, 1. __enter__()方法被执行 2. __enter__()方法返回的值 - 这个例子中是"Foo",赋值给变量'sample' 3. 执行代码块,打印变量"sample"的值为 "Foo" 4. __exit__()方法被调用 with真正强大之处是它可以处理异常。可能你已经注意到Sample类的__exit__方法有三个参数- val, type 和 trace。 这些参数在异常处理中相当有用。我们来改一下代码,看看具体如何工作的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# with_example02.py
 
 
class Sample:
    def __enter__(self):
        return self
 
    def __exit__(self, type, value, trace):
        print "type:", type
        print "value:", value
        print "trace:", trace
 
    def do_something(self):
        bar = 1/0
        return bar + 10
 
with Sample() as sample:
    sample.do_something()

Notice how in this example, instead of get_sample(), with takes Sample(). It does not matter, as long as the statement that follows with evaluates to an object that has an __enter__() and __exit__() functions. In this case, Sample()’s __enter__() returns the newly created instance of Sample and that is what gets passed to sample. 这个例子中,with后面的get_sample()变成了Sample()。这没有任何关系,只要紧跟with后面的语句所返回的对象有__enter__()和__exit__()方法即可。此例中,Sample()的__enter__()方法返回新创建的Sample对象,并赋值给变量sample。 When executed: 代码执行后:

1
2
3
4
5
6
7
8
9
10
bash-3.2$ ./with_example02.py
type: <type 'exceptions.ZeroDivisionError'>
value: integer division or modulo by zero
trace: <traceback object at 0x1004a8128>
Traceback (most recent call last):
  File "./with_example02.py", line 19, in <module>
    sample.do_something()
  File "./with_example02.py", line 15, in do_something
    bar = 1/0
ZeroDivisionError: integer division or modulo by zero

Essentially, if there are exceptions being thrown from anywhere inside the block, the __exit__() function for the object is called. As you can see, the type, value and the stack trace associated with the exception thrown is passed to this function. In this case, you can see that there was a ZeroDivisionError exception being thrown. People implementing libraries can write code that clean up resources, close files etc. in their __exit__() functions. 实际上,在with后面的代码块抛出任何异常时,__exit__()方法被执行。正如例子所示,异常抛出时,与之关联的type,value和stack trace传给__exit__()方法,因此抛出的ZeroDivisionError异常被打印出来了。开发库时,清理资源,关闭文件等等操作,都可以放在__exit__方法当中。 Thus, Python’s with is a nifty construct that makes code a little less verbose and makes cleaning up during exceptions a bit easier. 因此,Python的with语句是提供一个有效的机制,让代码更简练,同时在异常产生时,清理工作更简单。

理解python的with语句的更多相关文章

  1. 转: 理解Python的With语句

    Python’s with statement provides a very convenient way of dealing with the situation where you have ...

  2. 深入理解python with语句

    python的with语句相当于try.....finally,它是如何实现的呢?下面就结合范例和伪指令的实现来分析一下. with语句会汇编成:先调用with语句后面的表达式(open(...)), ...

  3. 用一个简单的例子来理解python高阶函数

    ============================ 用一个简单的例子来理解python高阶函数 ============================ 最近在用mailx发送邮件, 写法大致如 ...

  4. 深入理解 Python 异步编程(上)

    http://python.jobbole.com/88291/ 前言 很多朋友对异步编程都处于"听说很强大"的认知状态.鲜有在生产项目中使用它.而使用它的同学,则大多数都停留在知 ...

  5. 完全理解 Python 迭代对象、迭代器、生成器

    完全理解 Python 迭代对象.迭代器.生成器 2017/05/29 · 基础知识 · 9 评论 · 可迭代对象, 生成器, 迭代器 分享到: 原文出处: liuzhijun    本文源自RQ作者 ...

  6. [转]深刻理解Python中的元类(metaclass)以及元类实现单例模式

    使用元类 深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例 ...

  7. python assert 断言语句的作用

    python assert 断言语句的作用 assert语句的应用场景 使用assert语句是一个很好的习惯. 我们在编写代码的时候, 不知道程序会在什么时候崩溃, 与其让它在深度运行时崩溃, 不如预 ...

  8. 深入理解Python中的yield和send

    send方法和next方法唯一的区别是在执行send方法会首先把上一次挂起的yield语句的返回值通过参数设定,从而实现与生成器方法的交互. 但是需要注意,在一个生成器对象没有执行next方法之前,由 ...

  9. 理解 python 装饰器

    变量 name = 'world' x = 3 变量是代表某个值的名字 函数 def hello(name): return 'hello' + name hello('word) hello wor ...

随机推荐

  1. meta 360极速模式

    <meta name="render" content="webkit">  启用360极速模式

  2. CProgressCtrl进度条

    CProgressCtrl进度条 使用方法总结 标签: CProgressCtrlmfc 2016-03-03 09:19 762人阅读 评论(0) 收藏 举报  分类: MFC(11)  版权声明: ...

  3. 修改主机hostname

    1 修改hostname配置文件 vi /etc/sysconfig/network中的HOSTNAME 2 修改完后,使用hostname命令验证,发现hostname还是原来的 退出shell重新 ...

  4. sessionStorage 、localStorage 与cookie 的异同点

    cookie 容量4kb,默认各种浏览器都支持,缺陷就是每次请求,浏览器都会把本机存的cookies发送到服务器,无形中浪费带宽.userdata,只有ie支持,单个容量64kb,每个域名最多可存10 ...

  5. Fibonacci(斐波那契数列)的最佳实践方式(JavaScript)

    1)低级版本 var fibonacci = function(n) { if (n == 0 || n == 1) { return n; } else { return fibonacci(n - ...

  6. [转载]来,让我们谈一谈Normalize.css

    来源 : http://segmentfault.com/a/1190000002239676 ---------------------------------------------------- ...

  7. Bootstrap 表单

    表单布局 Bootstrap 提供了下列类型的表单布局: 垂直表单(默认) 内联表单 水平表单 垂直或基本表单 基本的表单结构是 Bootstrap 自带的,个别的表单控件自动接收一些全局样式.下面列 ...

  8. JQuery的ajaxFileUpload图片上传初试

    本案例主要说讲使用ajaxFileUpload实现图片的异步上传. 1.html代码部分 这里的代码,主要设置一下name,后台获取时候要用到,还有设置一个onchange的事件对应的方法:ajaxF ...

  9. POJ 3126 Prime Path

    给定两个四位素数a  b,要求把a变换到b 变换的过程要保证  每次变换出来的数都是一个 四位素数,而且当前这步的变换所得的素数  与  前一步得到的素数  只能有一个位不同,而且每步得到的素数都不能 ...

  10. css选择符

    E>F:子选择符,选择所有作为E元素的子元素F.<style type="text/css">li>a {color: #ccc;}</style&g ...