题目:

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.

一开始最直接的思路就是递归:拿给定的例子来说就是nums=[1,2,3] target=4 相当于,那么遍历nums,每次递归调用时将target-nums[i]作为参数传入下一层,这样就可以找到所有的组合,然后返回结果的个数即可。但是这样的尝试却TLE了,分析发现确实如此,即使nums中数目不多,只要target一大,那么递归的层数就会过多,这样一来极大的增加了时间复杂度。

随后便再想是不是能用DP来进行求解,从这个角度来看的话,这个问题就特别想斐波那契数列的DP求法,题目要求求得是不同排列的数目,那么很容易会发现,每一个数所得的排列数目都和之前的排列数目有关,和刚才的递归想法一致,只不过我们关注的是排列的数目而不是排列本身,target=4所得的排列数目按照[1,2,3]就可以分解为target=3,target=2,target=1的数目之和。如此一来,只要了解了nums就可以一步一步计算出target的排列数目。

java代码如下:

public int combinationSum4(int[] nums, int target) {
int result[]=new int[target+1];
result[0]=1;//如果target是nums中的一员,那么nums[0]就可以来表示这个数本身就可以当做一个排列
for (int i=1;i<target+1;i++)
for (int j=0;j<nums.length;j++){
if(i-nums[j]<0)
continue;
result[i]+=result[i-nums[j]];
}
return result[target];
}

python代码如下:

def combinationSum4(self, nums, target):

        """
:type nums: List[int]
:type target: int
:rtype: int
"""
result=[0]*(target+1)
result[0]=1
for i in xrange(0,target+1):
for j in xrange(0,len(nums)):
if i-nums[j]<0:
continue
result[i]+=result[i-nums[j]]
return result[target]

最后附上TLE 递归方法:(java)

public class CombinationSumIV {

    //递归复杂度太高,须其他方法
private static int count=0;
public int combinationSum4(int[] nums, int target) {
if (nums.length==0){
return 0;
}
ArrayList<Integer> temresult=new ArrayList<>();
for(int i:nums){
if (i > target){
continue;
}
else{
temresult.add(i);
deep(nums,target-i,temresult);
}
}
return count;
}
private void deep(int[] nums,int target,ArrayList<Integer> temresult){
if (target==0){
count++;
}
else {
for (int i:nums){
if (i>target){
continue;
}
else{
temresult.add(i);
deep(nums,target-i,temresult);
}
}
}
}
}

leetcode日记 Combination sum IV的更多相关文章

  1. [LeetCode] 377. Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  2. [LeetCode] 377. Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  3. Leetcode 377. Combination Sum IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  4. [LeetCode] 216. Combination Sum III 组合之和 III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  5. Leetcode 之 Combination Sum系列

    39. Combination Sum 1.Problem Find all possible combinations of k numbers that add up to a number n, ...

  6. [LeetCode] 39. Combination Sum 组合之和

    Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), fin ...

  7. Java for LeetCode 216 Combination Sum III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  8. Combination Sum | & || & ||| & IV

    Combination Sum | Given a set of candidate numbers (C) and a target number (T), find all unique comb ...

  9. [array] leetcode - 40. Combination Sum II - Medium

    leetcode - 40. Combination Sum II - Medium descrition Given a collection of candidate numbers (C) an ...

随机推荐

  1. Google C++ Style Guide

    Background C++ is one of the main development languages used by many of Google's open-source project ...

  2. PR曲线,ROC曲线,AUC指标等,Accuracy vs Precision

    作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又 ...

  3. mysql delete 使用别名 语法

    今天删除数据,写了这么条sql语句, DELETE   from  sys_menus s WHERE s.MENU_ID in (86,87,88); 结果报错.. [Err] 1064 - You ...

  4. 完美解释if-modified-since/not-modified 文件头的意义

    http://www.cnblogs.com/zh2000g/archive/2010/03/22/1692002.html 很好很强大

  5. centos5.11 repo 安装mysql5.7

    http://dev.mysql.com/doc/refman/5.7/en/linux-installation-yum-repo.html mysql yum repo 安装说明 http://d ...

  6. 用到的一些python包,记录下

    Requests beautifulsoup lxml logging gevent django Bottle numpy pandas sklearn pyopencv opencv_python ...

  7. oracle 存储过程创建及执行简单实例

    1. 创建 CREATE OR REPLACE PROCEDURE getAplage(eNo IN NUMBER,salary OUT NUMBER) AS BEGIN SELECT AplAge ...

  8. 【转】PCI学习笔记

    1.PCI设备编号    每一个PCI device都有其unique PFA(PCI Fcntion Address)    PFA由 bus number.device number.functi ...

  9. Gradle 使用本地的Jar包(gradle oracle ojdbc14 )

    Gradle 使用本地的Jar包(gradle oracle ojdbc14 ) 因为Oracle的驱动包在Maven上是没办法直接下载到的,所以在使用Gradle的使用,会导致无法加载Oracle, ...

  10. Unity3D 中的3种坐标系

    Unity3D Script API : Camera 若干文章: 1.Screen VS Viewport What is the difference 2.Screen,Viewport有什麽區別 ...