Lecture 3(part 1)

Divide and conquer

1. the general paradim of algrithm as bellow:

1. divide the problem into subproblems;

2. conqure each subproblems recrusively;

3. combine solution

2. Some typical problem (part 1)

the matrix mutiplication(strassen's algorithm) and the vlsi layout problem will be in the note leceture part 2.

  • binary search
/*-
* MIT introduction of algrithm
* Lecture 3: binary search
* Fredric : 2013-11-18
*/
#include<stdio.h>
#include<stdlib.h> typedef unsigned int uint; #define MAX 11
uint g_array[MAX] = {,,,,,,,,,,};
uint target = ; //target number
int binarysearch(uint start, uint end); void main(void)
{
int n = ;
printf("start to find the num:%d..\t\n", target);
if(- != (n = binarysearch(, MAX-))){
printf("the target %d has been found in num:%d", g_array[n],n);
}
system("pause");
return;
} /*-
* binary search recursive
*/
int binarysearch(uint start, uint end){
uint n = (start + end)/;
uint tmp = g_array[n]; if(target == tmp){
return n;
}else{
if(tmp > target){
return binarysearch(start, n);
}else{
return binarysearch(n+,end);
}
}
return -;
}
  • powering a number
/*-
* MIT introduction of algrithm
* Lecture 3: powering a number
* Fredric : 2013-11-17
*/
#include<stdio.h>
#include<stdlib.h> typedef unsigned int uint; //calculate the result of n^m, like n = 2, m = 3, result = 8
uint n = ;
uint m = ;// m > 1 double power_number(uint n, uint m); /*
* main function
*/
void main(void)
{
double result = 0.0;
result = power_number(n,m);
printf("the result of %d^%d is %lf /t/n", n,m,result);
system("pause");
return;
} /*-
* powering a number
* result =
* n^(m/2) * n^(m/2) if m is even
* n^((m-1)/2) * n^((m-1)/2)*n if m is odd
*/
double power_number(uint n, uint m){
if( == m){
return ;
} if( == m%){
return power_number(n,m/)*power_number(n,m/);
}else{
return power_number(n,(m-)/)*power_number(n,(m-)/)*n;
}
}
  • Fibonacci number(using matrix mutiplication)
/*-
* MIT introduction of algrithm
* Lecture 3: Fibonnaci,using the matrix method
* Fredric : 2013-11-17
*/
#include<stdio.h>
#include<stdlib.h> typedef unsigned int uint; /*-
* Input:
* pa00/01/10/11 according to the element of the Array Aij
* n: the number of the fibonacci
*/
void fibonacci_number(uint *pa00, uint *pa01, uint *pa10,uint *pa11, uint n); void main(void)
{
uint a00 = ;
uint a01 = ;
uint a10 = ;
uint a11 = ; uint num = ;//num > 0
fibonacci_number(&a00,&a01,&a10,&a11, num);
printf("The num %d fibonacci number is:%d\t\n", num, a10); system("pause");
return;
} /*-
* calculate the fibonacci number
* f(n) =
* 0 if n = 0;
* 1 if n = 1;
* f(n-1) + f(n-1) if n > 1
* the divide and conquer algrithm is:
* fn+1 fn 1 1
*( ) = ( )^n
* fn fn-1 1 0
*/
void fibonacci_number(uint *pa00, uint *pa01, uint *pa10,uint *pa11, uint n){
uint tmp00 = *pa00;
uint tmp01 = *pa01;
uint tmp10 = *pa10;
uint tmp11 = *pa11; if( == n){
return;
}else{
//Matrix mutiplication
*pa00 = tmp00 * tmp00 + tmp01 * tmp10;
*pa01 = tmp00 * tmp01 + tmp01 * tmp11;
*pa10 = tmp10 * tmp00 + tmp11 * tmp10;
*pa11 = tmp10 * tmp01 + tmp11 * tmp11;
if( == n%){
fibonacci_number(pa00,pa01,pa10,pa11,n/);
}else{ fibonacci_number(pa00,pa01,pa10,pa11,(n-)/);
uint tmp00 = *pa00;
uint tmp01 = *pa01;
uint tmp10 = *pa10;
uint tmp11 = *pa11; *pa00 = tmp00 + tmp01;
*pa01 = tmp00;
*pa10 = tmp10 + tmp11;
*pa11 = tmp10;
}
}
}

note of introduction of Algorithms(Lecture 3 - Part1)的更多相关文章

  1. Reading task(Introduction to Algorithms. 2nd)

    Introduction to Algorithms 2nd ed. Cambridge, MA: MIT Press, 2001. ISBN: 9780262032933. Introduction ...

  2. 6.006 Introduction to Algorithms

    课程信息 6.006 Introduction to Algorithms

  3. 算法导论(Introduction to Algorithms )— 第十二章 二叉搜索树— 12.1 什么是二叉搜索树

    搜索树数据结构支持很多动态集合操作,如search(查找).minmum(最小元素).maxmum(最大元素).predecessor(前驱).successor(后继).insert(插入).del ...

  4. 计算机电子书 2017 BiliDrive 备份

    下载方式 根据你的操作系统下载不同的 BiliDrive 二进制. 执行: bilidrive download <link> 链接 文档 链接 斯坦福 cs224d 深度学习与自然语言处 ...

  5. [Data Structures and Algorithms - 1] Introduction & Mathematics

    References: 1. Stanford University CS97SI by Jaehyun Park 2. Introduction to Algorithms 3. Kuangbin' ...

  6. INTRODUCTION TO BIOINFORMATICS

    INTRODUCTION TO BIOINFORMATICS      这套教程源自Youtube,算得上比较完整的生物信息学领域的视频教程,授课内容完整清晰,专题化的讲座形式,细节讲解比国内的京师大 ...

  7. [Algorithms] Graph Traversal (BFS and DFS)

    Graph is an important data structure and has many important applications. Moreover, grach traversal ...

  8. Introduction to TensorFlow

    Lecture note 1: Introduction to TensorFlow Why TensorFlow TensorFlow was originally created by resea ...

  9. Awesome Algorithms

    Awesome Algorithms A curated list of awesome places to learn and/or practice algorithms. Inspired by ...

随机推荐

  1. ssh链接数设置问题

    今天碰到一个问题,脚本执行scp文件拷贝,因为拷贝的服务器很多,所以拷贝脚本的实现是在把拷贝动作转后台执行,结果发现一堆文件拷贝失败.比较有迷惑性的是,拷贝失败的通常是同一个文件夹拷贝到所有服务器时失 ...

  2. 用命令查看Mysql中数据库、表的空间大小

    要想知道每个数据库的大小的话,步骤如下:1.进入information_schema 数据库(存放了其他的数据库的信息)use information_schema;2.查询所有数据的大小:selec ...

  3. Linux 下curl模拟Http 的get or post请求

    一.get请求 curl "http://www.baidu.com"  如果这里的URL指向的是一个文件或者一幅图都可以直接下载到本地 curl -i "http:// ...

  4. UVA11149_Power of Matrix

    题目简洁明了,给出矩阵,求前k次方和. 不知道这种方法是叫做二分幂还是倍增法,如果有知道的,请告诉我一下. 具体思想是这样的,A^1+A^2+A^3+......A^n=(E+A^(n/2))*(A^ ...

  5. JS各种算法小例子

    <!DOCTYPE html><html><head>    <title>js</title>    <meta charset=& ...

  6. 转:eclipse以及step into step over step return的区别

    首先来讲一下step into step over step return的区别: step into就是单步执行,遇到子函数就进入并且继续单步执行:(F5) step over是在单步执行时,在函数 ...

  7. WinForm 文本框验证

    这是一个自定义控件,继承了TextBox,在TextBox基础上添加了4个属性(下载): 1.ControlType 文本框需要验证的类型 2.ControlTypeText 显示的文字(只读) 3. ...

  8. ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法

    ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法 语法 第一种: 通过使用Oracle语句块  --指定文档所有部门都能查看 declare cursor TABLE_DEPT and ...

  9. PHP对象转数组||PHP数组转对象

    function arrayToObject($e){     if( gettype($e)!='array' ) return;     foreach($e as $k=>$v){     ...

  10. Linux系统简介

    1.操作系统包括 系统调用.内核. Linux 也就是系统调用和内核那两层,当然直观的来看,我们使用的操作系统还包含一些在 其上运行的应用程序,比如文本编辑器,浏览器,电子邮件. 2.Linux 本身 ...