1. What is multi-objective optimisation

[wikipedia]: Multi-objective optimization (also known as multi-objective programmingvector optimizationmulticriteria optimization,multiattribute optimization or Pareto optimization) is an area of multiple criteria decision making, that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics (see the section on applications for detailed examples) where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.

For a nontrivial multi-objective optimization problem, there does not exist a single solution that simultaneously optimizes each objective. In that case, the objective functions are said to be conflicting, and there exists a (possibly infinite) number of Pareto optimal solutions. A solution is called nondominated, Pareto optimal, Pareto efficient or noninferior, if none of the objective functions can be improved in value without degrading some of the other objective values. Without additional subjective preference information, all Pareto optimal solutions are considered equally good (as vectors cannot be ordered completely). Researchers study multi-objective optimization problems from different viewpoints and, thus, there exist different solution philosophies and goals when setting and solving them. The goal may be to find a representative set of Pareto optimal solutions, and/or quantify the trade-offs in satisfying the different objectives, and/or finding a single solution that satisfies the subjective preferences of a human decision maker (DM).

2. Your first multi-objective optimisation

Download and install jMetal. Follow the case study in Section 3.3 from the jMetal user manual (available from the jMetal website). Run NSGA-II for 10.000 generations on the benchmark functions ZDT 2 and ZDT 3 with population sizes 10, 100, and 1000. Visualise the six final populations.

Evolutionary Computing: multi-objective optimisation的更多相关文章

  1. Evolutionary Computing: 5. Evolutionary Strategies(1)

    resource: Evolutionary computing, A.E.Eiben Outline What is Evolution Strategies Introductory Exampl ...

  2. Evolutionary Computing: 5. Evolutionary Strategies(2)

    Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...

  3. Evolutionary Computing: 4. Review

    Resource:<Introduction to Evolutionary Computing> 1. What is an evolutionary algorithm? There ...

  4. Evolutionary Computing: [reading notes]On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System

    resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System ...

  5. Evolutionary Computing: 1. Introduction

    Outline 什么是进化算法 能够解决什么样的问题 进化算法的重要组成部分 八皇后问题(实例) 1. 什么是进化算法 遗传算法(GA)是模拟生物进化过程的计算模型,是自然遗传学与计算机科学相互结合的 ...

  6. Evolutionary Computing: Assignments

    Assignment 1: TSP Travel Salesman Problem Assignment 2: TTP Travel Thief Problem The goal is to find ...

  7. Evolutionary Computing: 3. Genetic Algorithm(2)

    承接上一章,接着写Genetic Algorithm. 本章主要写排列表达(permutation representations) 开始先引一个具体的例子来进行表述 Outline 问题描述 排列表 ...

  8. Evolutionary Computing: 2. Genetic Algorithm(1)

    本篇博文讲述基因算法(Genetic Algorithm),基因算法是最著名的进化算法. 内容依然来自博主的听课记录和教授的PPT. Outline 简单基因算法 个体表达 变异 重组 选择重组还是变 ...

  9. Automake

    Automake是用来根据Makefile.am生成Makefile.in的工具 标准Makefile目标 'make all' Build programs, libraries, document ...

随机推荐

  1. Jenkins Slave 通过JNLP 的方式 访问Master IP 总是127.0.0.1

    解决办法,重启机器 可能是我以前用的jenkins url 是127.0.0.1 然后是缓存什么没有释放掉所致 <jnlp codebase="http://183.62.104.48 ...

  2. Thinking in BigData 系列

    Thinking in BigData(九)大数据hadoop集群下离线数据存储和挖掘架构 Thinking in BigData(八)大数据Hadoop核心架构HDFS+MapReduce+Hbas ...

  3. linux常用的命令

    Linux简介及Ubuntu安装 Linux,免费开源,多用户多任务系统.基于Linux有多个版本的衍生.RedHat.Ubuntu.Debian 安装VMware或VirtualBox虚拟机.具体安 ...

  4. java中的23中设计模式(转)

    设计模式(Design Patterns) --可复用面向对象软件的基础 设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了 ...

  5. 山东省第七届ACM省赛------Triple Nim

    Triple Nim Time Limit: 2000MS Memory limit: 65536K 题目描述 Alice and Bob are always playing all kinds o ...

  6. JS调用JCEF方法

    坐下写这篇文章的时候,内心还是有一点点小激动的,折腾了一个多星期,踩了一个又一个的坑,终于找到一条可以走通的路,内心的喜悦相信经历过的人都会明白~~~~~今儿个老百姓啊,真呀个真高兴啊,哈哈,好了,废 ...

  7. d20161012

    Milk-run 供应商信息维护 基本信息,电子围栏 外部订单导入[或者录入页面] 订单基本信息,载具信息,物料信息,备注(外协还是华为导入订单,订单内容是否内部投递一样,是否需要导入附加,导入后是否 ...

  8. Iptables工作原理使用详解

    Iptables防火墙简介 Iptables名词和术语 Iptables工作流程 基本语法 Filter 参数说明 NAT表: Icmp协议 TCP FLAG 标记 什么是状态检测 iptables的 ...

  9. nginx expires

    配置expiresexpires起到控制页面缓存的作用,合理的配置expires可以减少很多服务器的请求要配置expires,可以在http段中或者server段中或者location段中加入   1 ...

  10. Centos7 关闭防火墙(Firewalld ),使用防火墙(iptables)

    1.直接关闭防火墙 systemctl stop firewalld.service: #停止firewall systemctl disable firewalld.service: #禁止fire ...