1. What is multi-objective optimisation

[wikipedia]: Multi-objective optimization (also known as multi-objective programmingvector optimizationmulticriteria optimization,multiattribute optimization or Pareto optimization) is an area of multiple criteria decision making, that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics (see the section on applications for detailed examples) where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.

For a nontrivial multi-objective optimization problem, there does not exist a single solution that simultaneously optimizes each objective. In that case, the objective functions are said to be conflicting, and there exists a (possibly infinite) number of Pareto optimal solutions. A solution is called nondominated, Pareto optimal, Pareto efficient or noninferior, if none of the objective functions can be improved in value without degrading some of the other objective values. Without additional subjective preference information, all Pareto optimal solutions are considered equally good (as vectors cannot be ordered completely). Researchers study multi-objective optimization problems from different viewpoints and, thus, there exist different solution philosophies and goals when setting and solving them. The goal may be to find a representative set of Pareto optimal solutions, and/or quantify the trade-offs in satisfying the different objectives, and/or finding a single solution that satisfies the subjective preferences of a human decision maker (DM).

2. Your first multi-objective optimisation

Download and install jMetal. Follow the case study in Section 3.3 from the jMetal user manual (available from the jMetal website). Run NSGA-II for 10.000 generations on the benchmark functions ZDT 2 and ZDT 3 with population sizes 10, 100, and 1000. Visualise the six final populations.

Evolutionary Computing: multi-objective optimisation的更多相关文章

  1. Evolutionary Computing: 5. Evolutionary Strategies(1)

    resource: Evolutionary computing, A.E.Eiben Outline What is Evolution Strategies Introductory Exampl ...

  2. Evolutionary Computing: 5. Evolutionary Strategies(2)

    Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...

  3. Evolutionary Computing: 4. Review

    Resource:<Introduction to Evolutionary Computing> 1. What is an evolutionary algorithm? There ...

  4. Evolutionary Computing: [reading notes]On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System

    resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System ...

  5. Evolutionary Computing: 1. Introduction

    Outline 什么是进化算法 能够解决什么样的问题 进化算法的重要组成部分 八皇后问题(实例) 1. 什么是进化算法 遗传算法(GA)是模拟生物进化过程的计算模型,是自然遗传学与计算机科学相互结合的 ...

  6. Evolutionary Computing: Assignments

    Assignment 1: TSP Travel Salesman Problem Assignment 2: TTP Travel Thief Problem The goal is to find ...

  7. Evolutionary Computing: 3. Genetic Algorithm(2)

    承接上一章,接着写Genetic Algorithm. 本章主要写排列表达(permutation representations) 开始先引一个具体的例子来进行表述 Outline 问题描述 排列表 ...

  8. Evolutionary Computing: 2. Genetic Algorithm(1)

    本篇博文讲述基因算法(Genetic Algorithm),基因算法是最著名的进化算法. 内容依然来自博主的听课记录和教授的PPT. Outline 简单基因算法 个体表达 变异 重组 选择重组还是变 ...

  9. Automake

    Automake是用来根据Makefile.am生成Makefile.in的工具 标准Makefile目标 'make all' Build programs, libraries, document ...

随机推荐

  1. Ubuntu 反复进入登录框问题

    记录一下,今天碰到一个问题,到ubuntu登陆界面时,输入用户名和密码之后,马上又回到登陆界面 查看了 .xsession-errors. 网上查找了相关资料,想到自己之前装过nvidia的驱动. 卸 ...

  2. Javascript中bind、call、apply函数用法

    js 里函数调用有 4 种模式:方法调用.正常函数调用.构造器函数调用.apply/call 调用. 同时,无论哪种函数调用除了你声明时定义的形参外,还会自动添加 2 个形参,分别是 this 和ar ...

  3. Prince2七大主题之风险

    Prince2七大主题之风险   我们前几个节学习了PRINCE2七大主题的商业论证.组织.质量和计划,今天我们开展对于风险模块的讲解. 风险:目的是识别.评估和控制不确定性,从而提高项目的成功率.P ...

  4. Ajax开发中服务端Response的Content-Type

    转自http://www.cnblogs.com/hyl8218/archive/2010/03/10/1681484.html ajax开发中在请求服务器端的响应时, 对于每一种返回类型 规范的做法 ...

  5. Nginx的安装配置

    1.安装PCRE库 $ cd /usr/local/ $ https://sourceforge.net/projects/pcre/files/pcre/8.36/ $ tar -zxvf pcre ...

  6. 【转】Hibernate 常见异常

    转载地址:http://smartan.iteye.com/blog/1542137 Hibernate 常见异常net.sf.hibernate.MappingException        当出 ...

  7. AngularJS控制器

    AngularJS 控制器 控制 AngularJS 应用程序的数据,控制器是常规的 JavaScript 对象. 1. angular.module(name, [requires], [confi ...

  8. Java注解和代理实现

    1.定义注解 import java.lang.annotation.Documented; import java.lang.annotation.ElementType; import java. ...

  9. King's Quest —— POJ1904(ZOJ2470)Tarjan缩点

    King's Quest Time Limit: 15000MS Memory Limit: 65536K Case Time Limit: 2000MS Description Once upon ...

  10. electron打包发布

    1.全局安装electron npm install electron -g 在cmd 直接输入 electron 直接启electron 2.编写第一个Electron应用 在任何地方,建立一个ap ...