目录

  一、线程池监控参数

  二、线程池监控类

  三、注意事项

在上一篇博文中,我们介绍了线程池的基本原理和使用方法。了解了基本概念之后,我们可以使用 Executors 类创建线程池来执行大量的任务,使用线程池的并发特性提高系统的吞吐量。但是,线程池使用不当也会使服务器资源枯竭,导致异常情况的发生,比如固定线程池的阻塞队列任务数量过多、缓存线程池创建的线程过多导致内存溢出、系统假死等问题。因此,我们需要一种简单的监控方案来监控线程池的使用情况,比如完成任务数量、未完成任务数量、线程大小等信息。

一、线程池监控参数

上一篇博文提到,线程池提供了以下几个方法可以监控线程池的使用情况:

方法 含义
getActiveCount() 线程池中正在执行任务的线程数量
getCompletedTaskCount() 线程池已完成的任务数量,该值小于等于taskCount
getCorePoolSize() 线程池的核心线程数量
getLargestPoolSize() 线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过,也就是达到了maximumPoolSize
getMaximumPoolSize() 线程池的最大线程数量
getPoolSize() 线程池当前的线程数量
getTaskCount() 线程池已经执行的和未执行的任务总数

通过这些方法,可以对线程池进行监控,在 ThreadPoolExecutor 类中提供了几个空方法,如 beforeExecute 方法, afterExecute 方法和 terminated 方法,可以扩展这些方法在执行前或执行后增加一些新的操作,例如统计线程池的执行任务的时间等,可以继承自 ThreadPoolExecutor 来进行扩展。

二、线程池监控类

import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.util.Date;
import java.util.List;
import java.util.Objects;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger; /**
* 继承ThreadPoolExecutor类,覆盖了shutdown(), shutdownNow(), beforeExecute() 和 afterExecute()
* 方法来统计线程池的执行情况
* <p>
* Created by on 2019/4/19.
*/
public class ThreadPoolMonitor extends ThreadPoolExecutor { private static final Logger LOGGER = LoggerFactory.getLogger(ThreadPoolMonitor.class); /**
* 保存任务开始执行的时间,当任务结束时,用任务结束时间减去开始时间计算任务执行时间
*/
private ConcurrentHashMap<String, Date> startTimes; /**
* 线程池名称,一般以业务名称命名,方便区分
*/
private String poolName; /**
* 调用父类的构造方法,并初始化HashMap和线程池名称
*
* @param corePoolSize 线程池核心线程数
* @param maximumPoolSize 线程池最大线程数
* @param keepAliveTime 线程的最大空闲时间
* @param unit 空闲时间的单位
* @param workQueue 保存被提交任务的队列
* @param poolName 线程池名称
*/
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue, String poolName) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), poolName);
} /**
* 调用父类的构造方法,并初始化HashMap和线程池名称
*
* @param corePoolSize 线程池核心线程数
* @param maximumPoolSize 线程池最大线程数
* @param keepAliveTime 线程的最大空闲时间
* @param unit 空闲时间的单位
* @param workQueue 保存被提交任务的队列
* @param threadFactory 线程工厂
* @param poolName 线程池名称
*/
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory, String poolName) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory);
this.startTimes = new ConcurrentHashMap<>();
this.poolName = poolName;
} /**
* 线程池延迟关闭时(等待线程池里的任务都执行完毕),统计线程池情况
*/
@Override
public void shutdown() {
// 统计已执行任务、正在执行任务、未执行任务数量
LOGGER.info("{} Going to shutdown. Executed tasks: {}, Running tasks: {}, Pending tasks: {}",
this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
super.shutdown();
} /**
* 线程池立即关闭时,统计线程池情况
*/
@Override
public List<Runnable> shutdownNow() {
// 统计已执行任务、正在执行任务、未执行任务数量
LOGGER.info("{} Going to immediately shutdown. Executed tasks: {}, Running tasks: {}, Pending tasks: {}",
this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
return super.shutdownNow();
} /**
* 任务执行之前,记录任务开始时间
*/
@Override
protected void beforeExecute(Thread t, Runnable r) {
startTimes.put(String.valueOf(r.hashCode()), new Date());
} /**
* 任务执行之后,计算任务结束时间
*/
@Override
protected void afterExecute(Runnable r, Throwable t) {
Date startDate = startTimes.remove(String.valueOf(r.hashCode()));
Date finishDate = new Date();
long diff = finishDate.getTime() - startDate.getTime();
// 统计任务耗时、初始线程数、核心线程数、正在执行的任务数量、
// 已完成任务数量、任务总数、队列里缓存的任务数量、池中存在的最大线程数、
// 最大允许的线程数、线程空闲时间、线程池是否关闭、线程池是否终止
LOGGER.info("{}-pool-monitor: " +
"Duration: {} ms, PoolSize: {}, CorePoolSize: {}, Active: {}, " +
"Completed: {}, Task: {}, Queue: {}, LargestPoolSize: {}, " +
"MaximumPoolSize: {}, KeepAliveTime: {}, isShutdown: {}, isTerminated: {}",
this.poolName,
diff, this.getPoolSize(), this.getCorePoolSize(), this.getActiveCount(),
this.getCompletedTaskCount(), this.getTaskCount(), this.getQueue().size(), this.getLargestPoolSize(),
this.getMaximumPoolSize(), this.getKeepAliveTime(TimeUnit.MILLISECONDS), this.isShutdown(), this.isTerminated());
} /**
* 创建固定线程池,代码源于Executors.newFixedThreadPool方法,这里增加了poolName
*
* @param nThreads 线程数量
* @param poolName 线程池名称
* @return ExecutorService对象
*/
public static ExecutorService newFixedThreadPool(int nThreads, String poolName) {
return new ThreadPoolMonitor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>(), poolName);
} /**
* 创建缓存型线程池,代码源于Executors.newCachedThreadPool方法,这里增加了poolName
*
* @param poolName 线程池名称
* @return ExecutorService对象
*/
public static ExecutorService newCachedThreadPool(String poolName) {
return new ThreadPoolMonitor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<>(), poolName);
} /**
* 生成线程池所用的线程,只是改写了线程池默认的线程工厂,传入线程池名称,便于问题追踪
*/
static class EventThreadFactory implements ThreadFactory {
private static final AtomicInteger poolNumber = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix; /**
* 初始化线程工厂
*
* @param poolName 线程池名称
*/
EventThreadFactory(String poolName) {
SecurityManager s = System.getSecurityManager();
group = Objects.nonNull(s) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
namePrefix = poolName + "-pool-" + poolNumber.getAndIncrement() + "-thread-";
} @Override
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
}
}

ThreadPoolMonitor 类继承了 ThreadPoolExecutor 类,重写了shutdown() 、shutdownNow() 、beforeExecute() 和 afterExecute()方法来统计线程池的执行情况,这四个方法是 ThreadPoolExecutor 类预留给开发者进行扩展的方法,具体如下:

方法 含义
shutdown() 线程池延迟关闭时(等待线程池里的任务都执行完毕),统计已执行任务、正在执行任务、未执行任务数量
shutdownNow() 线程池立即关闭时,统计已执行任务、正在执行任务、未执行任务数量
beforeExecute(Thread t, Runnable r) 任务执行之前,记录任务开始时间,startTimes这个HashMap以任务的hashCode为key,开始时间为值
afterExecute(Runnable r, Throwable t) 任务执行之后,计算任务结束时间。统计任务耗时、初始线程数、核心线程数、正在执行的任务数量、已完成任务数量、任务总数、队列里缓存的任务数量、池中存在的最大线程数、最大允许的线程数、线程空闲时间、线程池是否关闭、线程池是否终止信息

监控日志:

22:50:25.376 [cellphone-pool-1-thread-3] INFO org.cellphone.common.pool.ThreadPoolMonitor - cellphone-pool-monitor: Duration: 1009 ms, PoolSize: 3, CorePoolSize: 3, Active: 1, Completed: 17, Task: 18, Queue: 0, LargestPoolSize: 3, MaximumPoolSize: 3,  KeepAliveTime: 0, isShutdown: false, isTerminated: false

一般我们会依赖 beforeExecute 和 afterExecute 这两个方法统计的信息,具体原因请参考需要注意部分的最后一项。有了这些信息之后,我们可以根据业务情况和统计的线程池信息合理调整线程池大小,根据任务耗时长短对自身服务和依赖的其他服务进行调优,提高服务的可用性。

三、注意事项

1. 在 afterExecute 方法中需要注意,需要调用 ConcurrentHashMap 的 remove 方法移除并返回任务的开始时间信息,而不是调用 get 方法,因为在高并发情况下,线程池里要执行的任务很多,如果只获取值不移除的话,会使 ConcurrentHashMap 越来越大,引发内存泄漏或溢出问题。该行代码如下:

Date startDate = startTimes.remove(String.valueOf(r.hashCode()));

2. 有了ThreadPoolMonitor类之后,我们可以通过 newFixedThreadPool(int nThreads, String poolName) 和 newCachedThreadPool(String poolName) 方法创建两个日常我们使用最多的线程池,跟默认的 Executors 里的方法不同的是,这里需要传入 poolName 参数,该参数主要是用来给线程池定义一个与业务相关并有具体意义的线程池名字,方便我们排查线上问题。

3. 在生产环境中,谨慎调用 shutdown() 和 shutdownNow() 方法,因为调用这两个方法之后,线程池会被关闭,不再接收新的任务,如果有新任务提交到一个被关闭的线程池,会抛出 java.util.concurrent.RejectedExecutionException 异常。其实在使用Spring等框架来管理类的生命周期的条件下,也没有必要调用这两个方法来关闭线程池,线程池的生命周期完全由该线程池所属的Spring管理的类决定。

Java并发(六)线程池监控的更多相关文章

  1. Java并发编程——线程池的使用

    在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统 ...

  2. Java 并发编程 | 线程池详解

    原文: https://chenmingyu.top/concurrent-threadpool/ 线程池 线程池用来处理异步任务或者并发执行的任务 优点: 重复利用已创建的线程,减少创建和销毁线程造 ...

  3. Java并发编程——线程池

    本文的目录大纲: 一.Java中的ThreadPoolExecutor类 二.深入剖析线程池实现原理 三.使用示例 四.如何合理配置线程池的大小 一.Java中的ThreadPoolExecutor类 ...

  4. java并发:线程池、饱和策略、定制、扩展

    一.序言 当我们需要使用线程的时候,我们可以新建一个线程,然后显式调用线程的start()方法,这样实现起来非常简便,但在某些场景下存在缺陷:如果需要同时执行多个任务(即并发的线程数量很多),频繁地创 ...

  5. Java并发——ThreadPoolExecutor线程池解析及Executor创建线程常见四种方式

    前言: 在刚学Java并发的时候基本上第一个demo都会写new Thread来创建线程.但是随着学的深入之后发现基本上都是使用线程池来直接获取线程.那么为什么会有这样的情况发生呢? new Thre ...

  6. Java并发编程--线程池

    1.ThreadPoolExecutor类 java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,下面我们来看一下ThreadPoolExecuto ...

  7. JAVA 并发编程-线程池(七)

    线程池的作用: 线程池作用就是限制系统中运行线程的数量. 依据系统的环境情况.能够自己主动或手动设置线程数量,达到运行的最佳效果:少了浪费了系统资源,多了造成系统拥挤效率不高.用线程池控制线程数量,其 ...

  8. java并发编程-线程池的使用

    参考文章:http://www.cnblogs.com/dolphin0520/p/3932921.html 深入剖析线程池实现原理 将从下面几个方面讲解: 1.线程池状态 2.任务的执行 3.线程池 ...

  9. 《java学习三》并发编程 -------线程池原理剖析

    阻塞队列与非阻塞队 阻塞队列与普通队列的区别在于,当队列是空的时,从队列中获取元素的操作将会被阻塞,或者当队列是满时,往队列里添加元素的操作会被阻塞.试图从空的阻塞队列中获取元素的线程将会被阻塞,直到 ...

随机推荐

  1. [转*译]Networking API Improvements in Windows 10

        在当今,以云优先,移动优先技术为宗旨的时代下,大多数Apps都至少有一些与web服务或网络上其他设备的集成.这些包括应用程序,它获取天气在线内容,新闻或体育比赛的分数,媒体或下载的播客,甚至对 ...

  2. ORM作业

    使用之前学到过的操作实现下面的查询操作:1. 查询平均成绩大于60分的同学的id和平均成绩:2. 查询所有同学的id.姓名.选课的数量.总成绩; 3. 查询姓“李”的老师的个数: 4. 查询没学过“李 ...

  3. js之返回网页顶部

    目标效果:浏览网页过程中,滑动滚轮,显示返回顶部按钮,点击返回顶部后,返回网页顶端. 代码如下: <!DOCTYPE html> <html lang="en"& ...

  4. Jquery插件开发之图片放大镜效果(仿淘宝)

    原网转载地址:http://www.cnblogs.com/hnvvv/archive/2011/11/19/2255197.html 需求:公司某个网站,需要实现图片预览效果,并能像淘宝一样实现局部 ...

  5. 【读书笔记】iOS-解析JSON

    JSON相比XML最显著的优点是不需要使用重量级的解析库,因为其本身就是面向数据的,而且非常容易转换成哈希字典.除此之外,JSON文档相比同样的XML文档更小.在网络宽带有限的情况下,你很容易在Iph ...

  6. “一切都是消息”--iMSF(即时消息服务框架)之【发布-订阅】模式

    MSF的名字是 Message Service Framework 的简称,由于目前框架主要功能在于处理即时(immediately)消息,所以iMSF就是 immediately Message S ...

  7. Linux 学习笔记之超详细基础linux命令 Part 14

    Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 13---------------- ...

  8. Expo大作战(三十九)--expo sdk api之 DocumentPicker,Contacts(获取手机联系人信息),Branch

    简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...

  9. python网络编程:socketserver的基本使用

    本文内容: socketserver的介绍 socketserver的使用 socketserver的异步服务端 首发时间:2018-03-21 也可以使用socketserver来创建socket ...

  10. 【Python】keras使用LSTM拟合曲线

    keras生成的网络结构如下图: 代码如下: from sklearn.preprocessing import MinMaxScaler from keras.models import Seque ...