【洛谷P4097】Segment 李超线段树
题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线。
题解:初步学习了李超线段树。李超线段树的核心思想在于通过标记永久化的方式来维护斜率。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
const double eps=1e-6;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
int n,lastans,cnt;
struct line{double k,b;int id;};
struct node{
#define ls(x) t[x].lc
#define rs(x) t[x].rc
int lc,rc;bool tag;line s;
}t[maxn];
int tot,root;
void pushdown(int o,int l,int r,line now){
if(!t[o].tag){t[o].s=now,t[o].tag=1;return;}
double l1=now.k*l+now.b,r1=now.k*r+now.b;
double l2=t[o].s.k*l+t[o].s.b,r2=t[o].s.k*r+t[o].s.b;
if(l2>=l1&&r2>=r1)return;
else if(l1>=l2&&r1>=r2){t[o].s=now;return;}
else{
double pos=(now.b-t[o].s.b)/(t[o].s.k-now.k);
int mid=l+r>>1;
if(pos<=mid)pushdown(ls(o),l,mid,r1>r2?t[o].s:now);
else pushdown(rs(o),mid+1,r,r1>r2?now:t[o].s);
if((l1>l2&&pos>mid)||(pos<=mid&&r1>r2))t[o].s=now;
}
}
int build(int l,int r){
int x=++tot;
if(l==r)return x;
int mid=l+r>>1;
ls(x)=build(l,mid),rs(x)=build(mid+1,r);
return x;
}
void modify(int o,int l,int r,int x,int y,line now){
if(l==x&&r==y){pushdown(o,l,r,now);return;}
int mid=l+r>>1;
if(y<=mid)modify(ls(o),l,mid,x,y,now);
else if(x>mid)modify(rs(o),mid+1,r,x,y,now);
else modify(ls(o),l,mid,x,mid,now),modify(rs(o),mid+1,r,mid+1,y,now);
}
line query(int o,int l,int r,int pos){
if(l==r)return t[o].tag?t[o].s:line{0,0,0};
int mid=l+r>>1;
line res=pos<=mid?query(ls(o),l,mid,pos):query(rs(o),mid+1,r,pos);
if(!t[o].tag)return res;
double v1=t[o].s.k*pos+t[o].s.b,v2=res.k*pos+res.b;
if(!res.id||v1>v2||(fabs(v1-v2)<eps&&t[o].s.id<res.id))res=t[o].s;
return res;
}
void solve(){
n=read();
root=build(1,39989);
while(n--){
int opt=read();
if(opt==0){
int pos=(read()+lastans-1)%39989+1;
printf("%d\n",lastans=query(root,1,39989,pos).id);
}else{
int x0=read(),y0=read(),x1=read(),y1=read();
x0 = (x0 + lastans - 1) % 39989 + 1;
x1 = (x1 + lastans - 1) % 39989 + 1;
y0 = (y0 + lastans - 1) % (int) (1e9) + 1;
y1 = (y1 + lastans - 1) % (int) (1e9) + 1;
if(x0==x1)modify(root,1,39989,x0,x1,line{0.0,max(y0,y1),++cnt});
else{
if(x0>x1)swap(x0,x1),swap(y0,y1);
double k=(double)(y0-y1)/(x0-x1),b=(double)y0-k*x0;
modify(root,1,39989,x0,x1,line{k,b,++cnt});
}
}
}
}
int main(){
solve();
return 0;
}
【洛谷P4097】Segment 李超线段树的更多相关文章
- Luogu P4097 [HEOI2013]Segment 李超线段树
题目链接 \(Click\) \(Here\) 李超线段树的模板.但是因为我实在太\(Naive\)了,想象不到实现方法. 看代码就能懂的东西,放在这里用于复习. #include <bits/ ...
- 【BZOJ-3165】Segment 李超线段树(标记永久化)
3165: [Heoi2013]Segment Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 368 Solved: 148[Submit][Sta ...
- Segment 李超线段树
题目大意: 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第 i 条被插入的线段的标号为 i 2.给定一个数 k,询问与直线 x = k 相交的线段中,交点最靠上的线段的编号. 若 ...
- BZOJ3165: [Heoi2013]Segment(李超线段树)
题意 题目链接 Sol 李超线段树板子题.具体原理就不讲了. 一开始自己yy着写差点写自闭都快把叉积搬出来了... 后来看了下litble的写法才发现原来可以写的这么清晰简洁Orz #include& ...
- 【BZOJ 3165】 [Heoi2013]Segment 李超线段树
所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...
- P4097 [HEOI2013]Segment 李超线段树
$ \color{#0066ff}{ 题目描述 }$ 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 i 条被插入的线段的标号为 i 给定一个数 k,询问与直线 x = k 相交的线 ...
- 【BZOJ】1012: [JSOI2008]最大数maxnumber /【洛谷】1198(线段树)
Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插 ...
- 洛谷题解P4314CPU监控--线段树
题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...
- 洛谷P3372/poj3468(线段树lazy_tag)(询问区间和,支持区间修改)
洛谷P3372 //线段树 询问区间和,支持区间修改 #include <cstdio> using namespace std; struct treetype { int l,r; l ...
随机推荐
- 基于Ping和Telnet/NC的监控脚本案例分析
案例一:单纯地对某些ip进行ping监控 [root@test opt]# cat /opt/hosts_ip_list 192.168.10.10 192.168.10.11 192.168.10. ...
- 自动化批量管理工具salt-ssh - 运维小结
根据以往运维工作中操作经验来说,当管理上百台上千台服务器时,选择一款批量操作工具是及其有必要的.早期习惯于在ssh信任关系的前提下做for;do;done循环语句的批量操作,后来逐渐趋于使用批量工具操 ...
- Nginx+Tomcat+Memcached部署
环境清单列表:(因为只有三台电脑,所有把Nginx和memcached放到一起) 应用服务器1:192.168.51.10: 应用服务器2:192.168.55.110: memcached服务器:1 ...
- taro之React Native 端开发研究
初步结论:如果想把 React Native 集成到现有的原生项目中,不能使用taro的React Native 端开发功能(目前来说不能实现,以后再观察). RN开发有2种模式: 1.一是原生A ...
- 关键字搜索:jQuery过滤器插件fastLiveFilter||显示结果条数
引用js库 <script src="jquery-1.6.4.min.js"></script> <script src="jquery. ...
- 软工个人作业-博客作业-WEEK2
1.是否需要代码规范: (1)这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. 首先来说,从短期上和个体上来看,一个团队的代码风格必然会在一定程 ...
- Linux内核分析— —扒开系统调用的三层皮(上)
实验部分 根据系统调用表,选取一个系统调用.我选得是mkdir这个系统调用,其系统调用号为39,即0x27 由于mkdir函数的原型为int mkdir (const char *filename, ...
- JavaScript获取DOM节点
常用的方法有 document.getElementById("id"); document.getElementsByTagName('tagName'); document.g ...
- PHP和JavaScript将字符串转换为数字string2int
在看廖雪峰的JavaScript教程时,里面有一个题就是利用reduce()将string转换为int,我看评论中贴出的方法,当时觉得挺意外了,以为他只用了一行代码,即下面这行代码 var str=& ...
- docker container can not connect internet
https://stackoverflow.com/questions/23810845/i-cant-get-docker-containers-to-access-the-internet htt ...